
Temporal Frequency Probing for 5D Transient Analysis of Global Light Transport:

Supplemental Document

Matthew O’Toole1 Felix Heide2 Lei Xiao2 Matthias B. Hullin3 Wolfgang Heidrich2,4 Kiriakos N. Kutulakos1

1University of Toronto 2University of British Columbia 3University of Bonn 4KAUST

In this document we provide additional details on the formulation
of transient light transport in Fourier space.

A Fourier Transform and Convolution for

Matrix-valued Functions

We start by defining a Fourier Transform for matrix-valued func-
tions

T
ω = F{T̃}(ω) =

∫ ∞

−∞

T̃(τ)e−2πiωτ dτ (18)

and an analogous Fourier transform for vector valued functions

p
ω = F{p̃}(ω) =

∫ ∞

−∞

p̃(t)e−2πiωt dt (19)

Using the definition of convolution of a matrix-valued function and
a vector valued function from the main paper

(T̃ ∗ p̃)(t) =

∫ ∞

−∞

T̃(τ)p̃(t− τ) dτ (20)

we can show that the convolution theorem holds:

F{T̃ ∗ p̃}(ω) =

∫ ∞

−∞

(∫ ∞

−∞

T̃(τ)p̃(t− τ) dτ

)

e
−2πiωt dt

=

∫ ∞

−∞

T̃(τ)

(∫ ∞

−∞

p̃(t− τ)e−2πiωt dt

)

dτ

=

∫ ∞

−∞

T̃(τ)

(∫ ∞

−∞

p̃(t′)e−2πiω(t′+τ) dt′
)

dτ

=

∫ ∞

−∞

T̃(τ)

(∫ ∞

−∞

p̃(t′)e−2πiωt′ dt′
)

e
−2πiωτ dτ

=

(∫ ∞

−∞

T̃(τ)e−2πiωτ dτ

)(∫ ∞

−∞

p̃(t′)e−2πiωt′ dt′
)

= F{T̃}(ω)F{p̃}(ω) (21)

Similar derivations can be made for other key properties known
from the scalar Fourier transform (e.g. the shift and correlation
theorems).

B Extended Discussion on Single-Frequency

Transport Analysis

Dual equation Dual photograph is a technique that interchanges
the positions of lights and cameras in a scene [Sen et al. 2005; Sen
and Darabi 2009]. This technique relies on the Helmholtz reci-
procity principle, where a light path and its reverse light path (e.g.
light travelling along the same path but in the reverse direction)
have the same radiance transfer properties.

The travel time of light along a given light path is also invariant to

travel direction. An element T̃ij(τ) of the time-varying transport

matrix therefore captures the radiance for light paths with travel
time τ , emitted by source j, and received by camera pixel i, as well
as the radiance transfer for light travelling in the reverse direction
from camera pixel i to source j. This property is key to deriving the
transient dual equation:

ĩ(t) = (T̃T ∗ p̃)(t) (22)

where the operator T computes the transpose of the time-varying

transport matrix T̃(τ) for every travel time τ . The single-frequency
dual equation follows from the convolution theorem:

i
ω = (Tω)T p

ω
(23)

Inverse equation The inverse equation is the process of finding
an illumination pattern that produces a given photo. This is the
basis for work in radiometric compensation [Wetzstein and Bimber
2007; Ng et al. 2009], where the goal is to project seamless images
onto complex environments.

Performing radiometric compensation in the transient domain re-
quires inverting the transient frequency transport equation:

i
ω = (Tω)† pω

(24)

where the operator † is a generalized inverse (e.g. the Moore-
Penrose pseudoinverse).

Radiosity equation The transient radiosity equation is a varia-
tion of the transient rendering equation, specific to diffuse scenes.
The transient radiosity equation derives directly from the spatially-
discrete transient rendering equation:

i
ω = p

ω + AF
ω
i
ω

(25)

where the vector iω represents the total energy leaving each point,
the vector pω is the emitted energy, the diagonal matrix A repre-
sents the frequency-independent albedo term, and the matrix Fω is
the complex form factor matrix modelling both propagation delay
and radiance transfer of all pairwise scene points.

Conveniently, the solution of the transient radiosity equation for
given illumination conditions involves solving a simple matrix
equation:

i
ω = (I − AF

ω)−1
p
ω

(26)

where the matrix I is the identity matrix. Note that, for the DC
frequency ω = 0, the solution also formally solves the conventional
radiosity equation.

Inverse transport The ability to analyze and decompose an im-
age containing multibounce light transport into its constituent n-
bounce images is of practical and theoretical importance. In partic-
ular, Seitz et al. [2005] proved the existence of the inter-reflection
cancellation operators for computing the n-bounce images of a dif-
fuse scene, through the recovery of the scene’s albedo and form fac-
tor matrix. The steps to achieve this can be explained by working
backwards from the solution of the radiosity equation.



# Description Reference(s) Conventional Light Transport Single-Frequency Transient Light Transport

1 transport equation [Debevec et al. 2000; Ng et al. 2003] i = T p iω = Tω pω

2 dual equation [Sen et al. 2005; Sen and Darabi 2009] i = TT p iω = (Tω)T pω

3 inverse equation [Wetzstein and Bimber 2007] i = T† p iω = (Tω)† pω

4 radiosity equation [Goral et al. 1984] i = p + AFi iω = pω + AFωiω

5 radiosity solution [Goral et al. 1984] i = (I − AF)−1p iω = (I − AFω)−1pω

6 inverse transport [Seitz et al. 2005; Bai et al. 2010] T−1 = A−1 − F (Tω)−1 = (Dω)−1[ A−1
− F

ω ](Dω)−1

7 transport eigenvectors [O’Toole and Kutulakos 2010] λv = T v λv = Tω v

8 probing equation [O’Toole et al. 2012; O’Toole et al. 2014] i = (T ⊙ Π) 1 iω = (Tω ⊙ Π) 1

9 low/high-frequency

transport separation

[Nayar et al. 2006] ilow = 1
α
mink T pk

ihigh = maxk Tpk − αilow

iωlow = 1
α
mink Tωpω

k
iωhigh = maxk Tωpω

k
− αiωlow

Table 3: Related works on light transport analysis that have simple extensions to the single-frequency transient domain. In each instance,
the transient formulation becomes the conventional (steady state) formulation at ω = 0. Rows 1-7: Refer to the supplemental materials for
more details on the notation and formulation. Rows 8 and 9: We implement the probing equation and fast transport separation to separate
an image into three parts: a direct/retro-reflective component, a caustic component, and a non-caustic indirect component.

The transient frequency transport equation for a co-located projec-
tor and camera takes on a special form for diffuse scenes:

i
ω = D

ω(I − AF
ω)−1

AD
ω

︸ ︷︷ ︸

Tω

p
ω

(27)

where the diagonal matrix Dω represents the travel time for light
to propagate from its source to each scene point (and equivalent to
the travel time for light to travel from each scene point back to the
camera).

Given a transient frequency transport matrix Tω of any frequency,
recovering the albedo and transient form factors requires inverting
the matrix as follows:

(Tω)−1 = (Dω)−1[ A−1 − F
ω ](Dω)−1

(28)

where A−1 is a diagonal matrix and Fω is zero along the diago-
nal. It follows that each diagonal element of the inverted transient
frequency transport matrix has magnitude equal to the reciprocal of
the albedo, and phase corresponding to the round-trip travel time of
the direct light path. Similarly, one can recover the transient form
factor matrix, where the off-diagonal elements captures both the
radiance transfer and travel times of pairwise scene points.

Transport eigenvectors An illumination pattern that produces a
photo equal to the illumination pattern (up to some scalar value)
is known as a transport eigenvector. O’Toole et al. [2010] demon-
strated the ability to efficiently compute such eigenvectors, for ap-
plications that include approximating the light transport matrix and
efficiently solving the inverse equation.

In the transient setting, a transient transport eigenvector is a 3D
spatio-temporal illumination pattern that produces the equivalent
3D signal on the sensor. Finding these eigenvectors involves solv-
ing the following equation for individual frequencies ω:

λv = T
ω
v (29)

where the eigenvalue λ and eigenvectors v have complex values.

C Hardware: PMD Modulation Functions

Figures 12 and 13 illustrate the construction of function h(τ) from
the sensor and light source modulation functions f(t) and g(t) in
Algorithm 1.

∗ =

sensor modulation

function f(t)
light modulation

function g(t)
convolution function

h(τ)

− =

image iω1 image iω3 Re(iω) = iω1 − iω3

− =

image iω2 image iω4 Im(iω) = iω2 − iω4

Figure 12: Illustration of the PMD imaging procedure of Algo-
rithm 1 for ω = 100 MHz.
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Figure 13: Plots of the ideal and measured convolution functions
used to generate a PMD photo at both 50 MHz and 100 MHz.
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Figure 14: Accuracy benefits of subtracting direct/caustic contri-
butions. Top: Example of a temporal profile containing direct and
low-frequency indirect contributions. Bottom: Since Dirac peaks
have a flat spectrum, they dominate iω for a large range of frequen-
cies, even those where iωlow is significant. This makes it difficult
to decide the direct and indirect contributions of iω , without prior
knowledge of iωdirect. For this reason, we first localize the Dirac peak
by acquiring iωdirect and then subtract its contribution from the ac-
quired iω .
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