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ABSTRACT
Many computer vision tasks are hindered by image formation itself, a process that is governed by the so-called plenoptic
integral. By averaging light falling into the lens over space, angle, wavelength and time, a great deal of information is
irreversibly lost. The emerging idea of transient imaging operates on a time resolution fast enough to resolve non-stationary
light distributions in real-world scenes. It enables the discrimination of light contributions by the optical path length from
light source to receiver, a dimension unavailable in mainstream imaging to date. Until recently, such measurements used
to require high-end optical equipment and could only be acquired under extremely restricted lab conditions. To address
this challenge, we introduced a family of computational imaging techniques operating on standard time-of-flight image
sensors, for the first time allowing the user to “film” light in flight in an affordable, practical and portable way. Just as
impulse responses have proven a valuable tool in almost every branch of science and engineering, we expect light-in-flight
analysis to impact a wide variety of applications in computer vision and beyond.
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1. INTRODUCTION
A major challenge—if not the challenge—in computer vision stems from the fact that visual data is highly ambiguous:
given any two-dimensional image, there are infinitely many possible hypotheses of real-world scenes that would explain
what we see. In large part, this ambiguity can be traced back to the very mechanism of image capture: every pixel value of
our camera is an integral of the so-called plenoptic function1 over space (the extent of a pixel location), angle (the aperture
of the camera), wavelength (the spectral response) and time (the shutter period). Light contributions that reached the same
sensor location on different paths or at different times are thus mixed irreversibly. As an immediate consequence, many
common problems such as deblurring, motion tracking as well as the estimation of geometry, material reflectance and
illumination are still considered unsolved even after decades of active investigation. It is only in the last few years that
we have seen the development of novel imaging modalities that sample the temporal, angular and spectral dimensions to
produce high- dimensional plenoptic images, facilitating some of those hard tasks.

Along similar lines, the highly promising research direction of transient imaging has emerged that introduces time
resolution fast enough to resolve non-stationary light distributions in real-world scenes (see Fig. 1 for a synthetic example).
Just like the capture and characterization of impulse responses has proven a valuable tool in almost every branch of science
and engineering, the advent of transient imaging is expected to have a significant impact on a wide variety of applications
in computer vision and beyond.2–4 Yet, such measurements have so far been expensive and hence hard to obtain. With our
recent development of a computational imaging scheme using affordable and widespread AMCW time-of-flight imagers,5–7

we have lowered the entry barrier for this promising imaging modality, making it significantly more practical and bringing
it within financial reach of most imaging labs.
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The remainder of this paper is structured as follows. We will start by introducing the transient imaging problem
and providing an overview of the state of the art in Section 2. Section 3 will review a computational technique for the
reconstruction of transient images using data obtained from affordable AMCW time-of-flight imagers. In Section 4, we
will show an example transient image and demonstrate use of transient data in secondary inverse problems using the
example of non-line-of-sight imaging.
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Figure 1. Transient simulation of indirect and diffuse reflection of a short laser pulse from a wall to the “Stanford Bunny” model and
back to the wall. Left: sketch of the simulated scene. Center: steady-state solution (not time-resolved). Right: four snapshots of the
transient image at different times. Note how much structure the time discrimination adds to the reflection on the wall (outgoing ring
structures). All of this light was reflected off the back side of the bunny and hence a valuable source of information about a part of
the object that is outside the direct line of sight of both camera and light source. This global illumination renderer was developed by
Johannes Hanika in 2010 and took about 20 minutes to produce these results on a then-up-to-date PC with 16 CPU cores.

2. PROBLEM DEFINITION AND RELATED WORK
2.1 THE TRANSIENT IMAGE
The transient image IA,B(x, y, τ) contains, in signal processing terms, the spatio-temporal response of a scene to illumi-
nation by an ultrashort pulse of light emitted from point A and observed by a camera in a different point B. The scale
of phenomena and effects described by a transient image I defines the temporal resolution at which it must be sampled.
The connection between distance and time is given by the speed of light (c ≈ 3 × 108m/s in vacuum), e.g., within 1
nanosecond light would traverse roughly 1 foot of free space.

2.2 PRIOR WORK IN ULTRAFAST IMAGING
The measurement of an optical impulse response implies the use of a controlled light source and a camera, both temporally
variable, and a system bandwidth high enough to resolve the time scale on which the phenomena of interest are happening.
Due to the short time scales involved in light propagation (picoseconds to nanoseconds), this is a challenging problem. A
variety of high-speed photography techniques have been developed that are potential candidates for transient imaging in
indoor settings. The overview provided here is not exhaustive; instead, we recommend interested reader to use the our
references as a starting point for literature exploration.

Traditional photography with fast shutter designs. The use of traditional camera designs with mechanical shutters can
be ruled out for centimeter-scale transient imaging, no matter how sophisticated the mechanism. Although some designs
employing rotating prisms and mirrors can yield temporal resolutions of less than 1 ns—at least theoretically—,8 their
practical challenges are manifold and include not only structural issues but also less obvious ones such as the need for
vacuum conditions.9 Today’s state of the art in temporal resolution is held by gated image intensifiers that can reach
nominal shutter times down to 200 ps, still slightly longer than required for centimeter-scale transient imaging. However,
they require extremely fast switching of high operating voltages, high optical peak powers, and they do not generalize well
to repetitive shooting and a dense sampling on the temporal domain.



Fast opto-electronics. Individual certain opto-electronic detectors (photodiodes) do achieve sub-nanosecond rise times,
but the processing of such signals requires nontrivial instrumentation effort with multi-GHz analog bandwidth,10 and
scaling such solutions to full-frame capture (thousands to millions of pixels) is not an option. The frame rate at which
traditional (CCD and CMOS-type) imagers can be operated is constrained by principal limitations, such as the loss of light
due to short integration times, and technological challenges, such as the need for sufficiently fast read-out mechanisms.11

Even the most advanced solutions on the market offer no more than a few thousand frames per second and thus fall short
of our requirements for transient imaging by several orders of magnitude. It remains to be seen what recent pixel designs
such as CMOS-based single-photon avalanche diode arrays12 will be able to contribute to transient imaging.

Optical gating, holography, and streak cameras. The development of pulsed lasers in conjunction with non-linear
optical media has given rise to a number of techniques to characterize short optical events. Seeking to capture transient
images even with slow detectors, a mature direction of research seeks to switch light with light, constructing gates that
only transmit light for a short periods of time.13–15 The major drawback of these approaches is that they sample light
only along a single ray, and hence require additional effort for mechanical scanning. This limitation is in part overcome
by holographic techniques16, 17 and streak tube cameras that smear out a single scanline over time.18 As far as transient
imaging is concerned, both the holographic and the streak camera approach are champions in terms of spatial and temporal
resolution. However, they require extremely careful set-up, very high optical powers, hour-long capture times and access
to a laser laboratory, and so are not within reach for the casual user.

Candidate technology: AMCW time-of-flight sensors. Over the recent decade, we have witnessed the emergence
of time-of-flight sensors that deliver precise per-pixel range measurements. The most common implementation, the
amplitude-modulated continuous-wave (AMCW) technique, features a lock-in amplifier per pixel. Devices implementing
this approach are also referred to as photonic mixer devices19 or demodulation pixels.20 Each pixel of such CMOS-based
sensors can direct the charge from incoming photons to two or more storage sites,19, 21 an idea that has recently been ex-
tended to multi-bucket sensors.22 In their typical usage scenario, AMCW imagers are modulated with a periodic function
fω(t) and used in combination with a continuous-wave (CW) light source that is modulated at the same frequency with
function gω(t) as illustrated in Fig. 2. Assuming that the light has experienced delay τ and attenuation a on its way to the
sensor, resulting in a modified illumination function g̃ω(t) = agω(t− τ), the resulting correlation measurements are given
as

hω =

∫ T

0

fω(t)g̃ω(t)dt (1)

= a

∫ T

0

fω(t)gω(t− τ)dt (2)

where T is the integration time (which, for the sake of simplicity, is assumed to be an integer multiple of the modulation
period) and ω is the modulation frequency. In traditional range imaging, the task is to fit the time of flight τ and the
amplitude a, which can be achieved with high repeatability using four such measurements taken at different relative phase
shifts (in steps of 90◦).

3. RECONSTRUCTING TRANSIENT IMAGES FROM AMCW MEASUREMENTS
To overcome of the practical limitations of existing transient imaging hardware, we propose to use lock-in sensors in
conjunction with a computational reconstruction step to acquire transient images. In recent work, we demonstrated that
data captured using this technology encodes transient images in a linear way.5 The foundation of our work is an image
formation model that extends the common assumption that light only reaches the sensor on a single path (corresponding to
direct reflections by the scene). To this end, we generalize g̃ω(t) into an integral expression:

g̃ω(t) =

∫ τmax

τmin

a(τ)gω(t− τ)dτ, (3)
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Figure 2. Time-of-flight depth imaging assuming direct reflection (left; single light path contributing to pixel) and global illumination
(right; multi-path scattering). Illustrations courtesy of Felix Heide.

where a(τ), in turn, is the transient response of a pixel. It can be interpreted as a path-space integral that returns the
combined intensity of all contributing light paths of travel time τ :

a(τ) =

∫
µ(p)=τ

a(p)dp, (4)

We use Eq. 3 to turn Eq. 1 into a full global illumination model for the measured value resulting from the multitude of
ways in which the light can scatter back into the camera:

hω =

∫ T

0

fω(t)

∫ τmax

τmin

a(τ)gω(t− τ)dτdt, (5)

In order to reconstruct a(τ), we discretize τ into a finite number of bins, turning the function a into a vector i of sampled
values and the inner integral into a sum:

ik =

∫ τk+1

τk

a(τ)dτ (6)

hω ≈
∑
k

ik

∫ T

0

fω(t)gω(t− τk)dt︸ ︷︷ ︸
=cω,τ

, (7)

where the correlation coefficient cω,tau is no longer signal dependent and hence can be calibrated for the light source-
camera setup. We note that the measured outcome is linear in i. By varying the modulation frequency ω, we obtain a
vector of measurements h that is related to the discretized transient image i through a matrix C containing the correlation
coefficients, which is our linear model of image formation:

h = Ci (8)

Thus, the recovery of a transient image from lock-in measurements is a linear inverse problem, albeit a difficult one to solve.
Due to a maximum modulation frequency in the order of 100 MHz (corresponding to 3 meters of light propagation), the
linear system is ill-conditioned, ruling out a naı̈ve least-squares solution and requiring effective regularization strategies. A
common device for the regularization of closely related inverse problems like deconvolution or tomographic reconstruction
are sparsity-inducing `1 gradient priors, for instance total variation (TV). Since the transient image underlies physical
constraints of light transport in a scene, it is reasonable to also consider physically based models with a small number of
parameters.23 The use of such models for regularization turns the problem non-convex and calls for specialized solvers,
unless the number of parameters is small enough to use a basis pursuit approach. In recent work, we introduced the use of
exponentially modified Gaussian distributions in a sparse convolutional framework to reconstruct temporally dense pixel
responses.2
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Figure 3. From left to right: (a) Photo of our imaging setup. (b) Measured correlation matrix. (c) Photo of a scene composed of several
bottles filled with scattering water. The transient light source is located to the left, just outside the field of view. (d) Color-coded
rendering of a transient image of the same scene. Hue encodes the time of flight for the main intensity peak of the reconstruction.

Figure 4. Time slices from a transient image captured with our setup, and reconstructed using a spatio-temporal sparsity prior.5 As light
propagates through a scene containing several bottles filled with water, we see first reflection of the surface of the bottles, followed by
scattering inside the bottles, caustics, and light scattering onto the back wall.

4. INTERPRETATION OF TRANSIENT IMAGES
Fig. 3 shows a scene with several bottles, filled with water and a small amount of milk to create scattering. Slices of the
corresponding transient image as reconstructed using the method described in our 2013 SIGGRAPH paper5 are shown in
Fig. 4. In the first frame, the wavefront has just reached the front of the leftmost bottles, and is reflecting off their surface.
In the second frame, scattering effects are becoming visible in the bottles. Next, the light reaches the far wall, showing
caustics of the light transport through the bottles. Indirect illumination of the back wall from light scattered in the bottles
appears in the fourth frame. This light continues to illuminate the back ball even after the bottles themselves have darkened
(last frame).

4.1 MULTI-PATH ANALYSIS
Not only does the observation of light in flight offer a unique perspective on time and space, it can also be used to reason
about scene properties. Virtually all fields of remote sensing that employ time-of-flight measurements are affected by the
problem of multi-path scattering, i.e. signals that are reflected on other paths than the one intended. Traditionally, in lack
of better options, multi-path reflections have mostly been treated as a pollutant.24

Only recently, significant success has been reported in exploiting multi-path scattering as an additional source of infor-
mation in the geosciences25, 26 or radar localization.27

Underlying all multi-path analysis is the basic assumption that the transient image i results from light propagating
through a scene that is defined by a set of parameters v. The image formation model describes this light transport process
and is expressed as a function p():

i = p(v) (9)

Generative models / analysis-by-synthesis. In order to solve the inverse problem of recovering v given i, several paths
can be taken. If light transport is very complex but well-understood, and only a small number of parameters is to be
recovered, then an analysis-by-synthesis method is the most general approach, although very costly to compute. As of
today, there are no general global illumination renderers capable of producing transient images and fast enough to be
suited for use inside an optimization loop. In more constrained situations, for instance, we were able to demonstrate a
GPU-based approach based on the radiosity method that closely approximates the transient image shown in Fig. 1 and
executes within a small fraction of a second—the results can be seen in Fig. 5. The inverse problem can then be formulated



Raw Shadowing Result Reference
Figure 5. Approximation of transient light transport using single-bounce temporal radiosity, shown at different moments in time (rows).
From left to right: Raw temporal radiosity term, self-shadowing correction term, net temporal radiosity including silhouette mask (inset),
pathtraced reference with 100,000 samples per pixel. Rendering times are 0.12 seconds for the temporal radiosity solution (GPU) vs.
21.3 minutes for the pathtracer (on 16 CPU cores).

as the following optimization problem. We note, however, that the problem is, in general, not convex and a global solution
therefore not guaranteed:

vopt = arg min
v

1

2
||i− p(v)||22 + Γ(v), (10)

where Γ(v) is a problem-specific regularizer. Fig. 6 shows the reconstruction of an approximate geometry from a simulated
transient image. The object geometry was inferred using an unregularized gradient descent wrapped around the radiosity-
based implementation of the light transport operator. The object is represented as a tessellated spherical blob, where
the vector v contains all the vertex positions. The optimization loop displaces and deforms the mesh in an effort to
minimize error function Eq. 12, eventually converging to a shape that displays distinct features of the actual unknown side.
Although the use of such technique for the reconstruction of real-world, highly detailed 3D object geometry has yet to
be demonstrated, we expect the approach to fill in where a linearization of the image formation model (as explained in
the following) is not possible. The generality comes at a significant cost, though: the result took over 3 days to compute
on a recent graphics processor, and required several million evaluations of the transient image given the current geometry
hypothesis—each evaluation amounting to rendering a full transient video using a simplistic global illumination solver.

Linearized models The inverse problem of solving Eq. 9 for the parameter set v is a challenge of its own, but things
become even harder when i is not accessible directly but only in coded form. This is exactly the case when using AMCW
time-of-flight setup, where the relation between the latent transient image i and the measurements h is given by Eq. 8.
In Heide et al. 2014,6 we dealt with this situation by deriving a linear light transport operator P that acts on a volume v
approximately describes how much is scattered from each volume element into each camera pixel. Such linearized models
cannot deal with phenomena such as non-local scattering, shadowing or occlusion, but they allow for a joint inversion of
the light transport and the image formation models. The joint forward model is given as

h = CPv (11)



Figure 6. Demonstration of the analysis-by-synthesis approach on a simulated example. The “measurement”, i.e., the left-hand side of
Eq. 12 is taken from Fig. 1 (simulated transient image). Left: v is initialized as a spherical blob. Center: The optimized v has converged
to a distinctly bunny-like shape. Right: Photo of the actual Stanford Bunny (courtesy of Marc Levoy).
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Figure 7. Looking around the corner on a shoestring budget.6 (a) Top view of our measurement scenario (to scale). A diffuse wall is
illuminated by a modulated laser beam (red) and observed by a time-of-flight camera (blue). Even after two diffuse bounces off the wall,
inversion of a linearized light transport model allows us to infer the geometry and albedo of objects within a bounding volume (green)
that is completely occluded to both light source and camera, but visible from most locations on the wall. In this example, the shape of
two letters cut from cardboard (b) becomes clearly visible in the reconstruction (c).

with the corresponding least-squares formulation of the inverse problem,

vopt = arg min
v

1

2
||h−CPv||22 + Γ(v) (12)

Since the transient image is only contained implicitly, any nonlinear prior that used to be required for its regularization can
be skipped completely. It is replaced by an application-dependent regularizer applied directly in the reconstruction domain,
i.e., on the volume v. In order to, out of all volumes that solve Eq. 11, selects the one that is the sparsest, i.e., the closest
to describing the surface of an opaque object, we developed a set of sparsity-inducing penalties and derived the necessary
numerical framework to solve for them. As a result, we were able to demonstrate the reconstruction of object albedo and
geometry purely from 3rd-order diffusely reflected light off a wall (Fig. 7).

5. CONCLUSION
Using widely available and affordable AMCW range imagers, the reconstruction of transient images can be cast as an
linear inverse problem. Transient data obtained from such imaging setups can not only serve to illustrate macroscopic light
transport phenomena, but also be used to infer additional information about the albedo and geometry of objects that are
outside the line of sight.
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