
CGI2015 manuscript No.
(will be inserted by the editor)

Efficient Multi-Constrained Optimization for Example-Based Synthesis

Stefan Hartmann · Elena Trunz · Björn Krüger · Reinhard Klein · Matthias B. Hullin

Abstract Digital media content comes in a wide variety of
modalities and representations. Although they have obvi-
ous semantic and structural difference, many of them can be
unwrapped into a one-dimensional parameter domain, e.g.,
time, one spatial dimension. Novel content can then be gen-
erated in this parameter domain by computing sequences of
elements that are optimal according to an objective to be
minimized and in addition satisfy a number of user-defined
constraints. Examples for this type of content generation
task are, audio synthesis, human motion synthesis or archi-
tectural texture synthesis. In that work we present a gener-
alized algorithm for this type of content generation task. We
demonstrate the potential of our technique on a selection of
content creation tasks, namely the generation of extended
animation sequences from motion capture libraries and the
example-based synthesis of architectural geometry, such as
buildings and street blocks.

Keywords example-based synthesis, data-driven anima-
tion, motion synthesis, building layouts

1 Introduction

Intuitive and efficient design and editing of content for dig-
ital media in general, and computer graphics in particular,
continues to be one of the most prolific subjects of investi-
gation within our research community. Efforts to close the
productivity gap of typical 2D and 3D modeling or anima-
tion workflows have given rise to novel models and user in-
terfaces that make the editing of digital content more intu-
itive and efficient. With this work, we address an important
sub-class of problems that occurs in virtually all fields of

{hartmans,trunz,kruegerb,rk,hullin}@cs.uni-bonn.de
Institute of Computer Science II, University of Bonn, Friedrich-Ebert-
Allee 144, 53113 Bonn, Germany

multimedia computing: the arrangement of atomic elements
from a database into a sequence that is optimal under some
problem-specific objectives and constraints. Whether it be
animation sequences, architectural models or audio/video
snippets, many types of media content have to be arranged
along a one-dimensional parameter domain. In this work,
these parameter domains include time or path length for mo-
tion synthesis applications, building length or height for ar-
chitectural modeling. Typically the atomic elements carry
multiple attributes, called resources, and relations (transi-
tions) to other elements inside the database. They thus form
a graph (Fig. 1(a)) from which novel content can be gen-
erated by computing one or multiple paths that minimize an
objective function while satisfying one or more user-specified
constraints. Fig. 1(b) illustrates this using a synthesized hu-
man locomotion sequence that consumes 10 meter of trav-
eled distance under different time constraints.

In this paper, we propose to formulate the resource-con-
strained synthesis of new sequences from atomic elements
as a general resource-constrained k shortest path (RCKSP)
problem. While the case k=1 (RCSP) has already been ad-
dressed by the graphics community on several occasions, we
uniquely focus on the more general task of finding multiple
optimal solutions (a portfolio of solutions) and on satisfying
multiple constraints. Both features are of great relevance to
content generation problems in computer graphics. A unique
property of our approach and key to its superior performance
is that the graph traversal is guided by resource use, rather
than the cost function as is usually the case.

The following are the main contributions of this work:

– We formulate the generation of sequences from a database
of example elements as a resource-constrained k shortest
path (RCKSP) problem.

– We introduce an additive resource-guided graph search
technique for multi-constrained problems, where each con-
straint can be an interval or equality.

2 Stefan Hartmann et al.

75
131

70
3

35
1

30
144

75
41

walk2

punch

flail
jump

kick

run5

60
130

6.2

7.1

9.7

6.6

8.2

7.9

1.1 6.0
4.8

5.2

6.9 12.1

0.6

12.4

6.0

14.3

0.5

0.9

0.8

1.3

19.7

(a)

“Go 10 m in 4 s”

“Go 10 m in 8 s”

(b)

97.0

68.4

24.0

55.0

36
.0

24
.0

32
.0

28
.0

36

.0
28

.0

12
6.

4

60
.0

30.0

84.038.0

55
.0 38

.0

(c) (d)
Fig. 1 (a) Illustration of an augmented motion graph where nodes (motion segments) consume certain resources (number of frames, distance
traveled in cm) and edge weights represent the transition cost. Our algorithm efficiently solves resource-constrained shortest path (RCSP) problems
on such graphs, generating motion sequences that are optimal under a set of constraints. (b) Two sequences generated under different constraints
(same distance but different target times). Depending on the time allowed, the result is a walking (top) or a running motion (bottom). (c) User-
provided structure of a complex building with multiple nested T-junctions and a cycle. (d) Top view of a 3D model generated by the same algorithm
from a database of building parts.

– We generalize our technique to more complex structures
that may include cycles or T-junctions.

– We demonstrate the versatility of our approach using two
established application scenarios: example-based model-
ing of architectural geometry, and the synthesis of se-
quences from a motion database.

2 Problem definition and prior art

In the following, we formulate the problem of computing
optimal sequences subject to multiple constraints (equality
and interval) with the focus on computing a set of k optimal
solutions. We will proceed by reviewing the state of the art
in solving the special case of k = 1, and conclude the sec-
tion with an overview of prior work on applications in visual
computing, also including literature hinting at further poten-
tial usage scenarios for our technique. Table 1 summarizes
our literature review.

Optimal sequences as resource-constrained shortest paths.
Assume a databaseD containing n elements. Allowing mul-
tiple occurrences of the same element, we compose a se-
quenceX of elements fromD. Every time element e is used,
it consumes a certain amount of resources as given by its
non-negative resource usage vector r(e) = (r0, ..., rm)(e),
m being the number of different resources in our budget.
The cost of placing ei immediately before ej in a sequence
is given by the transition cost function δ(ei, ej) ≥ 0. The
total resource usage, R, and the total transition cost, ∆, for
a sequence X = (e1, ..., ep) of length p add up as

R(X) =

p∑
i=1

r(ei) and ∆(X) =

p−1∑
i=1

δ(ei, ei+1). (1)

Let χc be the set of all feasible sequences that consume re-
sources within certain given bounds,

χc = {X ∈ χ | Rmin
i ≤ Ri(X) ≤ Rmax

i ∀ i = 1, ...,m},

where χ is the set of all sequences of elements of D. Our
objective now is to find χkopt = {X1

opt, . . . , X
k
opt}, the set of

k solutions, each of which is both feasible, i.e it satisfies the
user defined resource constraints, and optimal with respect
to the total transition cost after exclusion of known better
solutions. In other words, the jth-best solution Xj

opt can be
defined recursively as follows:

Xj
opt = argmin

X∈χc\{X1
opt,...,X

j−1
opt }

∆(X) (2)

The constraint vectors Rmin = (Rmin
1 , ..., Rmin

m) and Rmax

may be a mix of integers and real values, all non-negative.
Their meaning depends on the application and can include
the length of a generated sequence as well as other parame-
ters (“minimum number of balconies on city block” or “num-
ber of jumps in motion sequence”). For now, we note the
presence of both lower and upper bounds, which define an
interval or an equality constraint if set to the same value
(e.g., “total duration of media playlist in seconds”). Fol-
lowing the example of Lefebvre et al. [10], we interpret the
above configuration as a graph with the database elements
(and their resource usage vectors) at the states, and the tran-
sition cost δ(ei, ej) as the weight of the directed edge from
state ei to state ej . The problem of minimizing the cost of
a sequence as per Eq. 2 then immediately translates to com-
puting the shortest path through the graph under the given
resource constraints, a class of problem that has been inves-
tigated in operations research [16,3,20].

Discrete element sequences. In order to re-sequence audio
content [22], or to synthesize curvilinear structured patterns
by example [26], utilize dynamic programming to compute
optimal sequences consisting of a fixed number of elements,
which is either obtained explicitly by uniformly subdivid-
ing the input curve (Zhou) or implicitly by the length of
the target song and the fixed size of elements retrieved from
the source song (Wenner). Both algorithms are designed to

Efficient Multi-Constrained Optimization for Example-Based Synthesis 3

compute sequences where the number of output elements
is known in advance. Lefebvre et al. [10] propose an algo-
rithm to compose new images utilizing image strips of vary-
ing size. Their algorithm is able to compose a new image of
a fixed size, without having to specify the number of image
strips used in the final result in advance. Recently, Zhou et
al. [25] proposed an algorithm for synthesizing structured
vector patterns from an example pattern. The method uses
dynamic programming to compute a topology aware layout
followed by continuous optimization to compute an exact
vector pattern ready for fabrication. Although our algorithm
or problem formulation might be similar to existing solu-
tions in graphics, we would like to emphasize, that we ap-
proach it in a very different way. First, we span the space of
resource feasible solutions before optimization. This is pos-
sible, because we focus on additive resource usages. This
turns out to be a significant advantage if the number of ele-
ments in the database is large. Second, our technique is ca-
pable of meeting an extended set of goals: (a) first, to satisfy
multiple constraints which might be intervals; (b) second,
to find k guaranteed optimal solutions; (c) third, generalized
structures where elements can have more than two neighbors
(t-junctions).

Method
Resource

constraints / type
Key points

/ type 1.5D

Safonova[17] None Yes/Class No
Lo[11] None Yes/Class No
Lefebvre[10] One/Equality Yes/Element No
Wenner[22] One/Equality Yes/Class No
Zhou[26] One/Equality No No
Ribeiro[16] One/Interval No No
Ziegelmann[28] Multiple/Upper No No
Zhu[27] Multiple/Upper No No
Turner[20] Multiple/Equality No No
Zhou [25] Two/Equality No No
Ours Multiple/Interval Yes/Class Yes

Table 1 Overview of existing methods that support different algorith-
mic features. The column headings are explained in Section 3 and the
supplemental material.

Animation Sequence Synthesis. In computer animation, var-
ious shortest-path algorithms have been proposed to syn-
thesize novel motions from motion capture databases. Ko-
var et al. [5] presented a greedy branch-and-bound approach
to generate optimal walks through a motion graph follow-
ing a pre-defined path. Their ideas were extended by Sa-
fonova and Hodgins [17], who introduced interpolated mo-
tion graphs and an efficient A∗ search to generate smoother
and more complex animation sequences along a path that
may include environmental constraints similar to our key
points described in Section 3. The exponential search space
of this kind of problem was reduced by Lo and Zwicker [11].
By employing a bidirectional A∗ algorithm and merging the
two search trees by interpolation, they were able to synthe-
size human motions at interactive rates. However, we note
that none of these approaches are designed to support re-

source constraints in order to handle specifications such as
“overcome a specific distance in 15 seconds, while jump-
ing twice”. Complementary to approaches based on graph
search are compact generative probabilistic models to syn-
thesize motions framewise [9] or utilizing morphable func-
tions in combination with semantic annotations [13] from
unsegmented prerecorded motion data.

3 Resource-constrained synthesis

3.1 Intermediate graph

In this section we describe and formulate a multi-constrained
optimization approach for example-based sequence gener-
ation. The heart of our approach is an intermediate graph
representation, which serves two major purposes. First, it
transforms the original constrained problem into an uncon-
strained one. Second, it spans the search space, containing
only feasible solutions, i.e. it only contains solutions that
satisfy the constraints independent from the transition cost.
To this end, we introduce discrete resource consumption lev-
els (henceforth simply referred to as level l) that group sub-
sequences of elements by their resource usage and impose a
total order on the intermediate graph. After the intermediate
graph has been built, the optimal or the k-optimal solutions
can be computed using an existing k-shortest path algorithm
such as the one by Eppstein [2].

Single-resource case. Let us first discuss the construction
of the intermediate graph for problems that underlie a sin-
gle constraint, leaving us with a scalar resource budget. The
satisfaction of equality constraints is a major strength of our
algorithm, so we will for now focus on this type of con-
straint. The intermediate graph is directed and acyclic, prop-
erties achieved by unrolling re-occurrences of elements in
a sequence. Its nodes are represented as N(e, l, rc), where
e denotes an element from the database, l represents the
level on which the node will be placed, and rc tracks the
already allocated resource so far, including the element’s
own r(e). Construction of the intermediate graph happens
in three stages: initialization, growing, and pruning.
Initialization: Before the actual intermediate graph is built,
first the number of levels L is determined from the single
constraint R. In our setting, a constraint represents an ap-
plication specific attribute A that needs to be satisfied by all
feasible solution sequences in the set χc. The number of lev-
els L = R/GCD is determined by dividing R by the great-
est common divisor (GCD) that the exemplars ofD share for
that specific attribute.1 For the sake of simplicity, let us as-

1 For real-valued constraints, if no GCD exists, we rescale/round the
elements’ resource usage values so that a GCD can be computed. In this
way, the real-valued resource is transformed into one that consumes
integer values and can be used in the synthesis setting. We perform this
as a preprocessing step and store the result for each element e ∈ D.

4 Stefan Hartmann et al.

sume GCD = 1 for the time being. Now, elements ei ∈ D
that are allowed to be placed at the front and at the back
of the solution sequences χ are inserted into the yet empty
graph at levels lf = 0 and lb = L − rc(ei). Their nodes
are set to carry the information N(ei, lf , r

c(ei)) for front
elements and N(ei, lb, L) for elements at the back, and they
are connected by zero-cost edges from a source node s (front
elements) or to a sink node t (back elements). The level can
now be interpreted as a position between source and sink.

for all nodes v1 = (e, lst, rc(e)) do
for all possible successors esucc of e do
lsucc ← lst + r(e);
rc(esucc)← rc(e) + r(esucc);
if lsucc ≤ lts and rc(esucc) ≤ L then
v2 ← (esucc, lsucc, rc(esucc));
if node v2 not exists then

create node v2;
end if
create edge (v1, v2, δ(e, esucc));

end if
end for

end for

Function 1: Graph growing (forward step)

Graph growing: We grow the graph in a bi-directional fash-
ion by alternating between forward expansion from the source
s (listed in Function 1) and backward expansion from the
sink node t, until a stopping criterion is met. In order to
make the growing process easy to understand, the pseudo
code presents the procedure in its simplest form. In the fol-
lowing, we explain its efficient implementation using two
separate priority queues Qf and Qb, one for each expansion
direction.

The fundamental difference of our algorithm to other
graph search algorithms is that the nodes in Qf and in Qb
are sorted by the current resource consumption instead of the
path cost. More specifically, Qf will prioritize nodes with
the least resource consumption rc, while Qb processes with
the highest consumption rc first.

Without loss of generality, we start explaining the for-
ward step. In order to expand the graph towards t, we extract
the current top node Nf (ef , lf , rc(ef)) from Qf , generate
all possible successor nodes N ′(esucc, lsucc, rc(esucc)), and
connect them with an edge of cost δ(ef , esucc). The level
lsucc of nodeN ′ is computed from the current top element of
Qf , namely lsucc = lf+r(ef), and the overall resource con-
sumption is increased by the successor’s usage, rc(esucc) =
rc(ef) + r(esucc). The backward expansion works along
the same lines, producing nodes that precede those currently
stored in Qb. Each time this step is executed, the current
top node Nb(eb, lb, rc(eb) of Qb is extracted and predeces-
sor nodes N ′(epred, lpred, rc(epred)) are generated, adding
edges with cost δ(epred, eb). Here, epred is an element from

the set of possible predecessors of eb and the nodes level
lpred = lb − r(epred) is computed by simply subtracting
the resource usage r(epred) of the predecessor element epred
from the current node level lb. The resource consumption so
far is updated accordingly, rc(epred) = rc(eb) − r(eb). In
case if a successor or predecessor node N ′(e, l, rc(e)) al-
ready exists only an edge labeled with the cost δ is inserted
into the graph as shown in Function 1 is inserted. We label
nodes by the direction in which they were created (forward,
backward) and we restrict both steps to only expand nodes
that were created from the same direction. The algorithm ter-
minates when the level of the current top node lf overlaps
with the level lb of the current top element in Qb, or if both
queues are empty. In the supplemental material, we prove
that the worst-case complexity of the presented algorithm
for a single constraint is O(Ldn), where n is the number of
elements in the database and d is the maximum number of
concatenation neighbors of an element.

Pruning. We do not produce nodes whose current resource
consumption rc(e) would cause a resource resource over-
flow/underflow, because these nodes would not occur in any
feasible solution at all. After the graph has been built, we
apply a second pruning step recursively removing nodes in-
side the graph, which have no successor/predecessors. Such
nodes result from not being connected to search graph of the
opposite direction.

Multi-resource case. We now extend the single-resource
solution to satisfy multiple equality constraints simultane-
ously. First, we revert from using the scalar resource us-
age r to the vector r, ending up with a node definition of
N(e, l, rc1(e)). When incorporating multiple constraints the
total order implicitly given by the single scalar resource con-
sumption is lost. In order to re-establish a total order, the
generated nodes are inserted lexicographically into the queues
using their attached vectors tracking the currently consumed
resources rc(e)). During the initialization, the number of
levels is determined over the sum of all constraints (L =∑m
j=1 Rj/GCDj), where GCDj is the greatest common

divisor that the exemplars of D share for the attribute j. The
levels of the nodes are now computed by adding up the re-
sources, arriving at lsucc = lf +

∑m
i=0 ri(ef) for the for-

ward step. To keep track of consumption of each individ-
ual resource, the currently consumed resource vector rc is
updated as rc(esucc) = rc(ef) + r(esucc). Just as before,
for the backward expansion step, we subtract the resources
accordingly. Unlike in the single-resource case, multiple in-
stances of an element may occur on a level, since differ-
ent combinations of resources may result in the same sum.
However, although multiple instances of a specific element
might be placed on the same level, they can still be distin-
guished from the other instances, because of their unique

Efficient Multi-Constrained Optimization for Example-Based Synthesis 5

vector rc(e) tracking the resources consumed until that el-
ement instance so far. Thus a new node is only generated
if no node having the unique node signature N(e, l, rc(e))

already exists. An illustration of the step by step graph con-
struction for a small concrete example is given in our supple-
mental material. If such a node N(e, l, rc(e)) already exists,
only an edge is inserted. Further, we note that the relative
scales of the resource components, and their order in the
vector, have no influence on the final outcome of the algo-
rithm. They do, however, affect the intermediate graph, the
order in which the solutions are generated, and possibly the
memory or runtime requirement of our algorithm.

Interval constraints. When interval constraints instead of
equality constraints are given, only the second part of the
initialization needs to be changed. Instead of one end level
L, we now have an interval between Lmin and Lmax. Nodes
for the elements allowed to be placed at the back of the so-
lution sequences are then created for all levels from Lmin
to Lmax. We observe that, despite the backward graph be-
ing expanded from a multitude of root nodes, in practice this
bloats the graph less severely than expected. After all, dur-
ing the expansion step, elements already present on a level
can be re-used and will not need to be duplicated.

3.2 Structure: key points and 1.5D synthesis

A sequence in the sense of this paper is a succession of ele-
ments, which we associate with an arrangement along a pri-
mary dimension x, such as time or the length of a curve. Our
algorithm treats this primary dimension as one out of sev-
eral resources of which each element uses different amounts.
Hence, if a certain time or length needs to be filled, the re-
sulting sequence could consist of many short elements or
just a few long elements. In order to give the user precise
control over the synthesis, we use the concept of structure,
which we define in a narrower sense than usual. The struc-
ture is the entirety of constraints on the synthesis.

additional local
 constraints

global constraints

x

Fig. 2 Structure is a set of constraints
defined on the primary dimension, x.
Here, the key point k1 divides the
structure S into substructures S1,2

that may each be constrained differ-
ently.

It is specified by
the user at and in be-
tween key points that
live on the primary di-
mension of the content
modality. For instance,
the structure of an an-
imation might contain
the specification, “the
actor should jump at
time 5 seconds”. It is
not until the final se-
quence has been assembled that this key point will corre-
spond to some ith element that happens to end up at that
particular time. The connection between structure and the

sequence is therefore an implicit one. In this section, we will
describe how our algorithm handles structural constraints in
terms of key points, and how they can be used to assemble
generalized (“1.5D”) structures.

Key points divide an 1D structure into a set of substructures
S = {S1, . . . , Sm+1}, where m is the number of key points
(also see Fig. 2).

They may further enforce the localized occurrence of a
specific element class, which is a harder task than just en-
forcing a particular element, because it means that adjacent
substructures cannot be treated independently of each other.
Additional local constraints may be specified for the do-
main covered by each of the substructures Si ∈ S. For each
Si, the algorithm constructs a subgraph Gi, where elements
placed at key points serve as front or back elements. All sub-
graphs Gi are now merged into the intermediate graph G,
while the front elements of S0 are connected by zero-cost
edges to the source node s and the back elements of Sm
connected by zero-cost edges to the sink node t.

1.5D Synthesis. Our framework described so far can also
be used to synthesize structures in the shape of a binary tree
or closed curves, while still guaranteeing a globally optimal
result. To allow branching, we introduce a special type of
key point with three neighboring elements. The major chal-
lenge here is to transform the tree into a 1D sequence and
ensure the uniqueness of the elements that will end up be-
ing placed at key points. We solve this by performing an
iterative longest path search starting from the root node of
the initial tree (Figure 3(a)). We remove the path edges from
the tree and store them as the primary structure. From the
remaining connected components, we extract a set of sec-
ondary structures, and so on, until no more connected com-
ponents are found. As a result we obtain a hierarchical set
of structures that will be utilized to construct the interme-
diate graph. The actual graph construction starts with the
primary structure that contains at least one key point, and
subdivides it into multiple substructures, then constructs the
initial graph for these as described above. For secondary
and higher-order structures the subgraph construction dif-
fers slightly, because by definition these structures start with
an element that has more than two neighbors. Setting up the
subgraph of a higher order structure might cause element
ambiguities, because the optimal element starting this struc-
ture might be a different one than chosen in the parent struc-
ture. To avoid such ambiguities we construct separate graphs
for each element that is allowed to start this current struc-
ture. We recurse into child structures until we have a full set
of subgraphs. In a final step, the subgraphs of child struc-
tures need to be merged into the graph of the parent struc-
ture. Here, we proceed as illustrated in Figure 3(b). Assume
we have created separate graphs for substructure k1 → S4,

6 Stefan Hartmann et al.

Primary structure

Secondary structures

Merged structure:

(a)

A)

B)

...

Primary structure:

...Secondary structure:

(b)

A)

B)

C)

....

....

... ...

(c)

Fig. 3 (a) We decompose binary tree structures by recursively extracting longest paths from the structure graph. (b) Merging the subgraph of a
child structure into its parent. (c) Closed curves are split by creating a virtual duplicate of one of the key points.

each starting with a different element ei with more than two
neighbors. In the parent structure, this corresponds to an ele-
ment epi , of which we create a virtual duplicate epi

′ that con-
sumes zero resources and retains the outgoing edges from
the original. On the original epi , we replace the outgoing
edges by new edges that connect to the front element of the
substructure, whose back elements, in turn, are linked back
to epi

′ via zero-cost edges. This procedure allows us to merge
a child structure into the graph of the parent structure with-
out causing element ambiguities. At the insertion point, the
choice of a specific element (for instance, a T-shaped part)
will thus depend on all its neighbors, rather than just on the
usual two. In order to treat closed curves in a similar fashion,
we simply split them at a key point (Figure 3(c)). The main
difference to dead-end branches as described above is that
here, there are real costs associated with the edges that close
the cycle. In case if a cycle and t-junctions are present, we
split and unroll the cycle at a key point and use the unrolled
cycle as primary structure. Then the remaining higher or-
der structures can be computed used the approach described
above.

4 Application examples

In this section, we evaluate our algorithm on two distinct
applications and present several results.

(a) Floor parts (b) FAR: 10.0 (c) FAR: 15.0 (d) FAR: 20.0

Fig. 4 Skyscrapers with a fixed height of 120 m and different floor-to-
area ratios (FAR). Database: 18 elements, 80 transitions.

Architectural geometry. Using our technique, we synthe-
size urban blocks and individual buildings from a library of
building parts. We show how using our concept of struc-
ture, global and local design goals can be implemented el-
egantly. One such example can be seen in Fig. 4, where we
synthesized different skyscrapers from a set of floor parts.
The resulting skyscrapers in Fig. 4 (b), (c) and (d) where
forced to have the same height but the floor-to-area ratio
(FAR, the total floor area divided by ground floor area) is
varied. As one would expect choosing a small FAR results
in a more slender building, while the larger the FAR is cho-
sen, the more chubby the shape of the building becomes.
Our databases are manually prepared by segmenting exist-
ing 3D buildings from Trimble Warehouse 3D. All parts are
labeled as left and right end parts, corners with different an-
gles, middle/filling parts and T-shaped parts, and annotated
with different real-valued, integer attributes such as length,
number of balconies, number of windows, number of doors
etc. In addition, each part stores a polygon which represents
the cross-section of the axis aligned cut for each side of the
building part. The geometry of the building parts is scaled
to quantize their length attribute to multiples of 0.2 m. The
transition cost between two building parts is defined as

δ(ei, ei+1) = |Ai,r −Aj,l|, (3)

i.e., the area of cross-section disagreement between two
adjacent parts, a measure of how well they fit together (see
Eq. 3). The areas Ai,r and Aj,l represent the right cross-
section of element ei and the the left cross-section of ele-
ment ej , respectively. In all cases we arrange the neighbor-
ing costs in a precomputed lookup table and store it along
with the database.

A second use case for architectural geometry is con-
struction of more complex building layouts on the basis of
a user defined footprint shape. We represent this footprint
shape as a simple skeleton graph that describes the shape
of the output building (see Fig. 1(c) (left)). Vertices in the
skeleton represent key points, and edges connecting them

Efficient Multi-Constrained Optimization for Example-Based Synthesis 7

67
.0

45.6 64.4

Fig. 5 Buildings obtained from the same structure using different styles. As indicated by the colored marks at part boundaries, the spatial compo-
sition of each sequence is highly dependent on the part database. This is why structure needs to be defined on the primary dimension rather than
the sequence index (Section 3.2). Databases: 99 elements, 4950 transitions (left); 131 elements, 9170 transitions (right).

Fig. 6 Three of best solutions given the same input structure. Note that even the part at the T-joint can vary.

can be annotated with multiple additional constraints that
are to be fulfilled in between, as well as an orthogonal direc-
tion vector to define the building front.

At each key point only a specific class of building parts
is allowed to be positioned, which we determine by analyz-
ing the number of outgoing edges of the skeleton vertices. If
one edge leaves, either left or right end parts will be chosen,
depending on the front direction of the edge. If two edges
leave a vertex, corner parts depending on the angle between
these edges are selected. T-shaped parts are selected from
the database for vertices with three outgoing edges. From
that input we compute a hierarchical structure according to
Section 3.2 serving as input for the graph construction (see
Section 3.1). From the resulting intermediate graph, the k-
shortest-paths algorithm of Eppstein [2] computes either the
optimal sequence Xopt or the k best sequences that contain
valid arrangements of building parts according to the input
skeleton and the globally and locally defined constraints. As
the solution found by the shortest path algorithm is a sequen-
tial list of building parts, we need to arrange them according
to the input skeleton as a final step. Each key point element
in the solution is aware at which vertex of the input skele-
ton it needs to be positioned, and so we can compute partial
buildings starting and ending with key point elements, and
simply transform them to the corresponding skeleton edges.

Decoupling the database and the defined structure makes
it easily possible to synthesize buildings of the same shape
targeting a completely different style, as illustrated in Fig. 5.
Note: Both buildings have exactly the same shape, but the
number of elements chosen to realize the shape is completely
different (colored cylinder represent the start of a new ele-
ment in the resulting sequence). Variations can be achieved
either by modifying the constraints as already demonstrated
with the skyscraper model or by computing the k best so-

Length
nodes constructed

(runtime)
50 m 10K (0.51s)
80 m 13K (0.99s)

100 m 30K (1.5s)
200 m 66K (3.8s)
500 m 177K (9.8s)

1000 m 362K (22.8s) 0.1

1

10

100

100 1000

R
un

ti
m

e
[s

]

Length [m]

Fig. 7 Performance study: From a database of complete buildings (74
elements, 5402 transitions), we generated streets of varying length R
and measured the total time required for building the intermediate
graph and finding the shortest path. The image shows the solution for
80 m. We found the runtime to be roughly proportional to R1.29.

lutions and selecting according to taste. Fig. 6 demonstrates
the three best solutions according to the defined cross sec-
tion disagreement cost function. All three buildings share
exactly the same shape. By inspecting different limbs of
the model and the parts selected at the t-junction and their
surrounding, one we easily recognize that all three models
vary their look locally. Such automatically generated varia-
tions may also serve as an inspiration to impose certain con-
straints on the next design iteration. For instance, the user
may have noticed a balcony, but prefer to have it in a differ-
ent location.

Finally, we note that despite the simple nature of our user
input (key points and constraints), this concept of structure
allows for intuitive modeling even of very complex build-
ings (Fig. 1, 4, 5 and 6). All models shown took no more
than a few seconds to generate on a standard desktop PC

8 Stefan Hartmann et al.

DB:
62 parts
2356 tr.

80.0 m

80.0 m

6
0

.0
 m

 6
0

.0
 m

4 balcony

7
 so

lar
 1

 lad
d

er

 1 door
4 balcony

 0
 d

o
o

r

 1
 la

d
d

er

Fig. 8 A building synthesized with different local constraints.

(less than 3 s for the most complex example in Fig. 1), which
makes our technique a candidate for interactive modeling
sessions. In Fig. 7, we provide a rudimentary performance
analysis across an extended range of problem sizes.

Discussion: From literature, we are aware that buildings
and/or facades can be modeled using forward [15,12] or in-
verse [1,19] procedural modeling metaphors. Although they
might be able to generate visually compelling results, we ar-
gue that these approaches are not directly suitable for mod-
eling a combination of global and local constraints such as
floor-to-area ratio or the specific occurrence of architectural
elements as shown in our examples (see Fig. 8). Another
possibility would be utilizing stochastic tiling as proposed
by Yeh et al. [23], which might indeed generate plausible re-
sults; however, their method would struggle satisfying hard
constraints.

Human motions. For this experiment, we used human mo-
tion segments extracted from the HDM05 Motion Capture
Database [14]. However, the motions could be segmented
using any method, for instance that by Zhou et al. [24],
Vögele et al. [21] or Lan et al. [8]. The resulting database
consists of 9709 segments with different motion classes such
as walk, jump, cartwheel, etc. Each segment is annotated
with the motion class it belongs to, and several properties
such as start orientation, end orientation, trajectory length,
animation length in frames. The transition cost between two
motion segments δ(ei, ei+1) is computed using the method
presented by Krüger et al. [7] resulting in about 310.000
transitions and on average 32 possible successors for each
motion segment. As input for the synthesis step, we define a
path as spline curve, which the generated motion shall fol-
low as closely as possible. Instead of approximating this
rather special constraint using key points, we use it to il-
lustrate that most components of our technique can be cre-
atively bent without touching the core algorithm. A cost func-
tion might/needs to be defined to fit the application’s need,
however, it will typically not modify the core of our algo-
rithm. For the motion synthesis example we add to penalize

the distance to the path by extending the definition of the
total cost ∆ of a sequence to

∆ =

p∑
i=1

αω(ei) +

p−1∑
i=1

(1− α)δ(ei, ei+1) (4)

with ω being the distance between the sketched curve and
the actor’s root node projected to the ground plane. In ad-
dition, several key points and constraints might be defined
to further structure the generated motion. Space and angle

Fig. 9 Motions obtained for different semantic constraints on the same
path. Database: 9709 elements, 310K transitions.

are discretized by 5 cm and 2.0 degrees, respectively. As the
complete search graph is a product of the motion graph with
all the possible (discretized) positions and orientations of the
root of the animated character [17,11] the complete setup
of the graph would cost too much memory. We therefore
construct the nodes located at a specific position in space
(x, y, β) with β being the orientation of the character, on de-
mand. In addition to the position and orientation of the root
of the character, we store the current consumed k resources
with each node represented byN(e, x, y, β, rci (e), . . . , r

c
m(e))

(see Section 1). After the graph setup is done we search for
the k best solutions under the given constraints. The result
is a sequence of human motion segments, which need to be
concatenated in order to produce the final motion. This is
achieved similar to Kovar et al. [5] using spline interpola-
tion over a window of 5 frames to smooth the transition be-
tween motion segments. For further cosmetic improvement
footskate cleaning [6] might be employed.

Discussion: Fig. 1 (b) show motion sequences synthe-
sized with our algorithm. In both cases we forced the char-
acter to overcome a distance of 10 meters, however, in each
sequence we utilized time as a second constraint in order
to intuitively vary the speed of the character. Another re-
sult is shown in Fig. 9, where we specified walking along a
straight line, but enforcing different constraints in each mo-
tion. More synthesized motion sequences are presented in
our accompanying video. One advantage of our method is
that we do not have to specify the order of the occurring
actions that shall be performed along a path, enabling the
designer to creatively explore the space of feasible character
motions under the given constraints.

Efficient Multi-Constrained Optimization for Example-Based Synthesis 9

Performance Evaluation. In the supplemental material we
sketch a simple algorithm, which we call forward graph
search (FGS). Utilizing an implicit graph growing scheme,
FGS generalizes and extends upon the algorithms presented
by Lefebvre et al. [10] and Safonova et al. [17] to incorpo-
rate single and multiple constraints. We evaluate the perfor-
mance of FGS against that of our technique using a subset
of the HDM05 database that only contains motion segments
from the walk class.

Ours
Length Setup Solve FGS
5 m 5.5 s 0.16 s 19.1 s
6 m 18.8 s 1.0 s 67.3 s
7 m 75.2 s 3.7 s 160.7 s
8 m 164.6 s 11.9 s 452.7 s

Table 2 Performance evaluation (single constraint): Our algorithm
vs. FGS

Ours
Length Frames Setup Solve Multiple Constraint FGS
5 m 146 3.4 s 0.17 s 84.7 s
6 m 146 23.1 s 0.38 s 185.6 s
7 m 187 108.1 s 4.7 s 834.9 s

Table 3 Performance evaluation (two constraints): Our algorithm
vs. FGS extended to multiple constraints

Table 2 lists the runtimes for a single constraint. The
goal is to synthesize a walking motion along a straight line,
where the character is constrained to overcome different fixed
distances. The results show that even for small problem in-
stances our algorithm performs significantly better than the
alternative FGS algorithm. In a second performance evalu-
ation, we incorporate multiple constraints and compare the
runtime of our approach against the multi-constraint FGS
extension (see supplemental material). As the second con-
straint, we force the character to overcome the distance in a
defined amount of time. The results listed in Table 3 show
that although we construct the full graph, computing a solu-
tion to the problem takes significantly less time. We further
evaluated the computation of k best solutions after we built
the intermediate graph using the implementation of Eppstein
[2]. We found computing multiple solutions given the inter-
mediate graph only depends on the algorithmic complexity
of Eppstein’s algorithm. Since usually k << n, with n being
the number of nodes, the runtime difference between com-
puting 1 and 104 solutions is negligible.

5 Discussion and future work

Availability of annotated data: The outcome of any exam-
ple based synthesis technique can only be as good as the
data fed into it. In our case, the elements need to be mean-
ingfully segmented and annotated with additional informa-
tion, which is not included in the research databases we are

aware of. Consequently, we had to manually prepare the 3D
and motion data in order to make it usable for our purpose.
The automatic and community-driven generation of exam-
ple data bases are vibrant research topics and we are confi-
dent that in near future good example data will be available.
Constraining the search space: It is in the nature of hard
constraints that they cut down the space of feasible solu-
tions. This, of course, depends on many factors including the
size of the database and the relative resource consumptions
of the elements contained in it. In fact, in our experiments,
we encountered cases where a very slight variation of equal-
ity constraints made all the difference between there being
many solutions and none at all. Our algorithm performs best
at equality constraints where suitable solutions exist. If there
are none, for instance when trying to build a 50 m street out
of a database of 20 m buildings, the failure can easily be de-
tected by observing that the forward and backward trees do
not connect. At that point, the user can be presented with
several options to re-specify the problem, for instance by re-
laxing the constraint that caused the impossibility.
Characterization: Although we have presented a theoreti-
cal basis for handling more general structures including T-
junctions under multiple constraints, our analysis of the al-
gorithmic complexity is currently limited to the single con-
straint. From our experiments, we observe that the method
scales well to rather complex structures including multiple
T-joints. A rigorous analysis of the algorithmic and memory
complexity in these scenarios is subject of future work.
Transfer to applications: The problem (RCSP) that our algo-
rithm solves at its core is not specific to an application. How-
ever, due to the approximative way in which we handle re-
source usage, some creative experimentation may be needed
in order to adapt the technique for a given content generation
task. As more problems are solved using our technique, we
therefore hope to gain the insight required to make recom-
mendations on how to best deal with certain types of con-
straints. So far, we found that most are best formulated in
terms of per-element resources, and others may map better
to per-transition costs. Yet others may depend on the con-
text and require a side tap into the algorithm, like the extra
cost term we used to make the animation follow a path—an
example we used to illustrate that the core of our technique
is in principle flexible enough to allow for the injection of
other kinds of constraints.
Outlook: So far, we have only started exploring the potential
of our algorithm in real-world use cases, and there are many
research directions that might be worth a closer look. For
instance, we are not aware of any example-based synthesis
techniques for multi-character animations (imagine a danc-
ing couple), which could map well to motion graphs with
T-joints as the actors split and re-join. Beyond the direc-
tions sketched in this paper, we plan to investigate the wider
field of media computing. We see plenty of sequential prob-

10 Stefan Hartmann et al.

lems that might benefit from our approach, from re-mixing
of text, summarization of audio and video, to the generation
of playlists or game level design [4,18].

6 Conclusions

In this work, we presented a generalized approach for the
synthesis of optimal sequences subject to multiple constraints.
We showed how key points can be used to handle complex
input descriptions (cycles, t-junction), while still ensuring
global optimality. We demonstrated the versatility of our al-
gorithm in two distinct application directions, and described
how the respective settings can be cast to input for our algo-
rithm. Our results illustrate the potential and in particular the
flexibility of this approach. We believe that computer graph-
ics research will benefit from studying RCSP/RCKSP-class
algorithms more deeply, since many applications are based
on data of some sequential nature, and demand for the satis-
faction of multiple equality and interval constraints.

Acknowledgements

We thank AIF Projekt GmbH for their support through the
AtEgoSim project, and Max Hermann for valuable discus-
sions and his illustration of Fig. 2 and 3.

References

1. Martin Bokeloh, Michael Wand, and Hans-Peter Seidel. A connec-
tion between partial symmetry and inverse procedural modeling.
ACM Trans. Graph. (Proc. SIGGRAPH), 29(4):104:1–104:10.

2. David Eppstein. Finding the k shortest paths. In Proc. 35th Symp.
Foundations of Computer Science, pages 154–165. IEEE, Novem-
ber 1994.

3. Renan Garcia. Resource constrained shortest paths and exten-
sions. PhD thesis, Georgia Institute of Technology, 2009.

4. Ian D Horswill and Leif Foged. Fast procedural level population
with playability constraints. In AIIDE, 2012.

5. Lucas Kovar, Michael Gleicher, and Frédéric Pighin. Motion
graphs. ACM Trans. Graph. (Proc. SIGGRAPH), 21(3):473–482,
July 2002.

6. Lucas Kovar, Michael Gleicher, and John Schreiner. Footskate
cleanup for motion capture editing. In ACM SIGGRAPH Sympo-
sium on Computer Animation, pages 97–104, 2002.

7. Björn Krüger, Jochen Tautges, Andreas Weber, and Arno Zinke.
Fast local and global similarity searches in large motion capture
databases. In ACM SIGGRAPH Symposium on Computer Anima-
tion, pages 1–10, July 2010.

8. Rongyi Lan and Huaijiang Sun. Automated human motion
segmentation via motion regularities. The Visual Computer,
31(1):35–53, 2015.

9. Jehee Lee, Jinxiang Chai, Paul S. A. Reitsma, Jessica K. Hod-
gins, and Nancy S. Pollard. Interactive control of avatars animated
with human motion data. ACM Trans. Graph. (Proc. SIGGRAPH),
31(5):491–500, 2002.

10. Sylvain Lefebvre, Samuel Hornus, and Anass Lasram. By-
example synthesis of architectural textures. ACM Trans. Graph.
(Proc. SIGGRAPH), 29(4), 2010.

11. Wan-Yen Lo and Matthias Zwicker. Bidirectional search for inter-
active motion synthesis. Computer Graphics Forum, 29(2):563–
573, 2010.

12. Paul Merrell and Dinesh Manocha. Constraint-based model syn-
thesis. In SIAM/ACM Conf. on Geometric and Physical Modeling,
pages 101–111, 2009.

13. Jianyuan Min and Jinxiang Chai. Motion graphs++: a com-
pact generative model for semantic motion analysis and synthesis.
ACM Trans. Graph., 31(6):153:1–153:12, 2012.

14. M. Müller, T. Röder, M. Clausen, B. Eberhardt, Björn Krüger, and
Andreas Weber. Documentation Mocap Database HDM05. Tech-
nical Report CG-2007-2, Universität Bonn, June 2007.

15. Pascal Müller, Peter Wonka, Simon Haegler, Andreas Ulmer, and
Luc Van Gool. Procedural modeling of buildings. ACM Trans.
Graph. (Proc. SIGGRAPH), 25(3):614–623, 2006.

16. Celso C Ribeiro and Michel Minoux. A heuristic approach to hard
constrained shortest path problems. Discrete Applied Mathemat-
ics, 10(2):125–137, 1985.

17. Alla Safonova and Jessica Hodgins. Construction and optimal
search of interpolated motion graphs. ACM Trans. Graph., 26(3),
2007.

18. Gillian Smith, Mike Treanor, Jim Whitehead, and Michael Mateas.
Rhythm-based level generation for 2d platformers. In Conf. on
Foundations of Digital Games, pages 175–182, 2009.

19. Jerry O. Talton, Yu Lou, Steve Lesser, Jared Duke, Radomír Měch,
and Vladlen Koltun. Metropolis procedural modeling. ACM
Trans. Graph., 30(2):11:1–11:14, 2011.

20. Lara Turner. Variants of shortest path problems. Algorithmic Op-
erations Research, 6(2):91–104, 2011.

21. Anna Vögele, Björn Krüger, and Reinhard Klein. Efficient unsu-
pervised temporal segmentation of human motion. In ACM SCA,
July 2014.

22. Simon Wenner, Jean-Charles Bazin, Alexander Sorkine-Hornung,
Changil Kim, and Markus Gross. Scalable music: Automatic mu-
sic retargeting and synthesis. Proc. Eurographics, 32(2):345–354,
May 2013.

23. Yi-ting Yeh, Katherine Breeden, Lingfeng Yang, Matthew Fisher,
and Pat. Hanrahan. Synthesis of tiled patterns using factor graphs.
ACM Trans. Graph., 32(1):614–623, 2012.

24. Feng Zhou, F. De la Torre, and Jessica Hodgins. Aligned cluster
analysis for temporal segmentation of human motion. In IEEE
Conf. on Automatic Face and Gestures Recognition, 2008.

25. Shizhe Zhou, Changyun Jiang, and Sylvain Lefebvre. Topology-
constrained synthesis of vector patterns. ACM Trans. Graph.,
33(6), 2014.

26. Shizhe Zhou, Anass Lasram, and Sylvain Lefebvre. By-example
synthesis of curvilinear structured patterns. Computer Graphics
Forum, 32(2):355–360, 2013.

27. Xiaoyan Zhu and Wilbert E. Wilhelm. A three-stage approach for
the resource-constrained shortest path as a sub-problem in column
generation. Comput. Oper. Res., 39(2):164–178, February 2012.

28. Mark Ziegelmann. Constrained shortest paths and related prob-
lems. PhD thesis, Saarland University, 2004.

