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In correlation-based time-of-flight (C-ToF) imaging systems, light sources
with temporally varying intensities illuminate the scene.Due to global illu-
mination, the temporally varying radiance received at the sensor is a com-
bination of light received along multiple paths. Recovering scene properties
(e.g., scene depths) from the received radiance requires separating these
contributions, which is challenging due to the complexity of global illumi-
nation and the additional temporal dimension of the radiance.

We propose phasor imaging, a framework for performing fast inverse
light transport analysis using C-ToF sensors. Phasor imaging is based on
the idea that by representing light transport quantities asphasors and light
transport events as phasor transformations, light transport analysis can be
simplified in the temporal frequency domain. We study the effect of tem-
poral illumination frequencies on light transport, and show that for a broad
range of scenes, global radiance (interreflections and volumetric scattering)
vanishes for frequencies higher than a scene-dependent threshold. We use
this observation for developing two novel scene recovery techniques. First,
we present Micro ToF imaging, a ToF based shape recovery technique that
is robust to errors due to interreflections (multi-path interference) and vol-
umetric scattering. Second, we present a technique for separating the direct
and global components of radiance. Both techniques requirecapturing as
few as3− 4 images and minimal computations. We demonstrate the valid-
ity of the presented techniques via simulations and experiments performed
with our hardware prototype.
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1. INTRODUCTION

Correlation-based time-of-flight (C-ToF) imaging systemsconsist
of temporally modulated light sources and sensors with temporally
modulated exposures. The brightness measured by the sensoris the
correlation between the temporally varying radiance incident on the
sensor and the exposure function. This is illustrated in Figure 1.
Because of their ability to measure scene depths with high precision
and speed, these systems are fast becoming the method of choice
for depth sensing in a wide range of applications. Several low cost
and compact C-ToF systems are available as commodity devices,
including the Microsoft Kinect and the SoftKinetic sensors.

Global light transport in C-ToF imaging: Conventional C-ToF
imaging systems assume that sensor pixels receive light only due to
direct illumination of scene points from the source. However, due
to global illumination, the sensor receives radiance alongseveral
paths, after multiple reflection/scattering events. Recovering scene
properties (e.g., scene depths) from the received radiancerequires
separation of contributions from different paths. This is adifficult
task due to the complexity of global illumination, and is made even
more challenging because of the additional temporal dimension of
the radiance.

Phasor representation of radiance:Our goal is to develop a com-
pact model for generalized C-ToF imaging, i.e., a model of C-ToF
imaging that accounts for full global illumination. To thisend, we
make the following observations. If the scene is illuminated with
sinusoids of a given temporal frequency, the radiance at anypoint
and direction is always a sinusoid of the same frequency, irrespec-
tive of the scene. Since all the sinusoids are of the same frequency,
the frequency can be factored out and the radiance at any point and
direction can be represented by asingle complex number, or pha-
sor. With phasor representation, light transport at each temporal
frequency can be analyzed separately, thus significantly reducing
the complexity. Also, since phasor radiance corresponds toa par-
ticular modulation frequency, it can be captured by a C-ToF sensor
operating at that frequency with only two measurements.

Phasor imaging:Based on these observations, we propose phasor
imaging, a framework for analyzing light transport in C-ToFimag-
ing, using phasor representations of radiance and light transport
events. In particular, we analyze the effect of temporal frequency
on light transport and show that for a broad range of scenes, global
radiance decreases with increasing frequency, eventuallyvanishing
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beyond a threshold frequency. Using this property, we develop two
scene analysis techniques:

—Transport-robust shape recovery,
—Fast separation of direct and global radiance.

Transport-robust shape recovery: An important problem faced
by C-ToF based depth recovery systems is the errors caused by
global illumination (interreflections or multi-path interference and
volumetric scattering). These errors are systematic and scene de-
pendent, and can be orders of magnitude larger than the random er-
rors occurring due to system noise. This problem has received a lot
of attention recently, with a variety of techniques having been pro-
posed to mitigate the errors [Godbaz et al. 2008; Dorringtonet al.
2011; Kirmani et al. 2013]. These approaches assume global illu-
mination to be a discrete sum of contributions along a small number
(2 − 3) of light paths. For general scenes, pixels may receive light
along several, potentially infinite, light paths. Consequently, these
approaches are limited to scenes with only high frequency light
transport (e.g., specular interreflections).

We present Micro ToF imaging, a technique for recovering shape
that is robust to errors due to global illumination, and is applicable
to scenes with a broad range of light transport effects. It isbased
on using high temporal frequencies at which global illumination
vanishes, and hence does not introduce errors in the phase ofthe
received radiance. The term micro refers to the fact that only high
temporal frequencies are used, which have small (micro) periods.
Although using high frequencies achieves robustness to global illu-
mination, the unambiguous depth range is small due to phase am-
biguities. Micro ToF uses two (or more) high frequencies andstan-
dard phase unwrapping techniques to disambiguate the high fre-
quency phases, thus achieving robustness to global illumination as
well as a large depth range, with as few asfour measurements.

Fast separation of direct and global radiance:We present a tech-
nique for separation of direct and global radiance components. One
way to separate the two components (using temporal light modula-
tion) is to measure the full transient image of the scene [Heide et al.
2013; Velten et al. 2013]. These approaches, although theoretically
valid, require prohibitively large acquisition time. We show that it is
possible to perform the separation by capturing onlythree measure-
ments at a single high temporal frequency. The proposed technique
can be thought of as the temporal counterpart to the technique pre-
sented by Nayaret al. [2006] which performed separation using
high spatial frequency illumination.

Limitations and implications: We have demonstrated our scene-
analysis techniques by building a hardware prototype basedon
a low cost C-ToF sensor. Currently, these sensors have a limited
range of modulation frequencies, which restricts the application of
our techniques to relatively large scale scenes. However, this is not
a theoretical limitation. As device frequencies increase [Akbulut
et al. 2001; Wu et al. 2010; Buxbaum et al. 2002; Schwarte 2004;
Busck and Heiselberg 2004], it will be possible to apply our tech-
niques on smaller scale scenes. Due to their generality, near real
time acquisition and computation times, we believe that thepro-
posed techniques will be readily integrated into future C-ToF imag-
ing systems for performing a variety of scene analysis tasks.

2. RELATED WORK

Impulse Time-of-Flight Imaging: Impulse ToF imaging tech-
niques measure thetemporal impulseresponse of the scene by il-
luminating it with very short (pico/nanosecond) laser pulses and
recording the reflected light at high temporal resolution. Impulse
ToF imaging was the basis of one of the first ToF range imaging

 

signal generator 

scene 

source 

m(t): source  

modulation function 

R(t): sensor  

exposure function 
measured brightness 

Fig. 1. Correlation-based ToF image formation model.The scene is il-
luminated by a temporally modulated light source, with radiant intensity
I(θ, t) along directionθ. The sensor’s exposure is also temporally modu-
lated during the integration time according to the functionR(t). The bright-
nessB(p) measured at a sensor pixelp is the correlation of the incoming
radianceL(p, t) and the exposure functionR(t).

systems [Koechner 1968]. While earlier systems assumed only a
single direct reflection of light from the scene, recent techniques
(called transient imaging) have used the impulse ToF principle to
measure and analyze both direct and indirect light transport for cap-
turing images around a corner [Kirmani et al. 2009], measuring 3D
shape [Velten et al. 2012] and motion of objects [Pandharkaret al.
2011] around the corner, performing separation of light transport
components [Wu et al. 2012], measuring BRDF [Naik et al. 2011],
capturing images with a lens-less sensor [Wu et al. 2012], and cap-
turing the propagation of light [Velten et al. 2013].

Correlation-Based Time-of-Flight Imaging: These techniques
were introduced as a low cost alternative to impulse ToF imaging.
The scene is illuminated with continuous temporally modulated
light (e.g., with sinusoids), and the sensor measures the temporal
correlation of the incident light with a reference function[Schwarte
et al. 1997; Lange and Seitz 2001]. Scene depths are computedby
measuring the relative phase-shift between the incident light and
the emitted light. While there has been research on optimizing the
modulation waveform [Payne et al. 2010; Ferriere et al. 2008; Ai
et al. 2011] for achieving high precision and for handling interfer-
ence among multiple ToF cameras [Buttgen et al. 2007], it is mostly
assumed that sensor receives only direct reflection from thescene.
Our work seeks to generalize correlation-based ToF imagingto in-
clude a variety of indirect (global) light transport effects.

Multi Path Interference in Time-of-Flight Imaging: Recently,
there has been a lot of research towards mitigating the effect of
global illumination (multi-path) in ToF cameras. In general, this is
a difficult problem because global illumination depends on scene
structure, which is unknown at time of capture. There have been
several attempts at solving the problem for special cases, such
as piecewise planar Lambertian scenes [Fuchs 2010; Fuchs etal.
2013; Jimenez et al. 2012] or temporally sparse signals [Godbaz
et al. 2008; 2009; 2012; Dorrington et al. 2011; Jimenez et al.
2012; Kadambi et al. 2013; Kirmani et al. 2013]. These approaches
do not generalize to all forms of light transport. Moreover,they
often require capturing a large number of images and/or compu-
tationally intensive optimization-based reconstructionalgorithms.
The approach of Freedmanet al. [2014] considers compressible
signals (instead of sparse signals), and can handle limitedamount
of diffuse interreflections. However, since the signal is assumed to
be compressible, it is limited to scenes where the dominant amount
of global illumination is due to only a small number of light paths.
The approach presented in this paper requires taking as few as four
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measurements and only a few linear operations, and is applicable
to scenes with a wide range of light transport effects.
Light Transport Analysis Using Spatial Light Modulation: In
the last few years, several techniques performing light transport
analysis using spatially modulated light have been presented. This
includes methods for inverting light transport [Seitz et al. 2005],
performing global-transport-robust shape recovery [Gupta et al.
2009; Gupta and Nayar 2012; Gupta et al. 2013; Couture et al.
2014] and separating or selectively enhancing light transport com-
ponents [Nayar et al. 2006; Reddy et al. 2012; OToole et al. 2012].

Recently, O’Tooleet al. [2014] have used a combination of
spatial and temporal light modulation for performing a variety of
scene analysis tasks. While their techniques rely onhigh-spatial-
frequencylight modulation, our focus is on studying the behavior
of light transport as a function of temporal frequencies. Wedevelop
techniques that use onlyhigh-temporal-frequencylight modulation,
and achieve near real-time capture rates.

3. BACKGROUND AND IMAGING MODEL

A C-ToF imaging system consists of a temporally modulated light
source, and a sensor whose exposure can be temporally modu-
lated during integration time. This is illustrated in Figure 1. Let
the source be modulated with a periodic functionm(t) (normal-
ized to be between0 and1). Then, the radiant intensityI(θ, t) of
the source in directionθ is given as1:

I(θ, t) = i(θ)m(t). (1)

The sensor exposure is temporally modulated according to the
exposure functionR(t), which can be realized either by on-chip
gain modulation (e.g., photonic mixer devices [Schwarte etal.
1997]) or by external optical shutters [Carnegie et al. 2011].

Let the radiance incident at a sensor pixelp be L(p, t). The
brightnessB(p) measured at pixelp is given by the correlation
between the incoming radiance and the exposure function:

B(p) =

τ∫

0

R(t)L(p, t)dt, (2)

whereτ is the total integration time.
Light transport equation for C-ToF imaging: Let Lθ(p, t) be
the radiance incident at pixelp due to light emitted from the source
along directionθ. Lθ(p, t) is given as:

Lθ(p, t) = β(p, θ)I

(

θ, t− Γ(p, θ)

c

)

, (3)

whereΓ(p, θ) is the length of the path taken (through the scene)
by the ray emitted in directionθ and arriving atp. The constant
c is the speed of light.β(p, θ) is the light transport coefficient be-
tween directionθ and pixelp; it is defined as the fraction of emitted
intensity that reaches the sensor.

The total received radianceL(p, t) is the integral of contribu-
tions from the set of all outgoing directionsΩ:

L(p, t)=

∫

Ω

Lθ(p, t)dθ=

∫

Ω

β(p, θ)I

(

θ, t−Γ(p, θ)

c

)

dθ . (4)

This is thelight transport equation for C-ToF imaging. It ex-
presses the temporal radiance profiles received at a pixel interms
of the emitted radianceI (θ, t) and the scene properties (light trans-
port coefficients and path lengths). Since it is scene dependent, in

1The notation and symbols used in the paper are given in Appendix A.
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(a) Single emitted-received ray pair (b) All emitted-received ray pairs

Fig. 2. Signal processing view of phasor light transport.(a) Rays emit-
ted from the source and received at the sensor are represented by single pha-
sors. The scene transforms every emitted phasor into a received phasor. The
transformation is linear (multiplication by the light transport coefficient for
the emitted-received ray pair). (b) Light transport between all the emitted
and received rays can be compactly represented as a matrix multiplication.

general,L(p, t) does not have a compact analytic form (as a func-
tion of t). L(p, t) is a combination of light coming along multiple
paths, which cannot be easily separated and analyzed for recover-
ing scene properties. Also, capturing the entire time profile requires
long acquisition times.
A compact representation of radiance:If the scene is illuminated
with sinusoidally varying illumination at a fixed frequency, the ra-
diance at every point and every direction in space (including at the
sensor) will also vary sinusoidally with the same frequency. This is
becauseL(p, t) is an integral of shifted and scaled emitted radiance
functionsI (θ, t) (Eq. 4), and sinusoids are closed under scaling,
shifting and integration. Since all the sinusoids are of thesame fre-
quency, we can factor the frequency out, and represent the radiance
at any pointx in space (including the sensor) along any directionθ

by a single complex number, or phasor~L(x, θ) = L(x, θ)ejφ(x,θ),
whereL is the amplitude andφ is the phase of the sinusoid2.
j =

√
−1 is the complex square-root of unity. We call~L thephasor

radiance, short for phasor representation of radiance.
Phasor light transport: The scene can be considered as a system
that transforms the phasor radiance emitted by the source (by mod-
ulating its phase and magnitude) into phasor radiance received by
a sensor pixel. The transformation can be expressed as a multipli-
cation of the emitted phasor by another phasor - the light transport
coefficient between the emitted-received ray pair. This is illustrated
in Figure 2 (a). As has been shown recently [O’Toole et al. 2014],
the light transport between all the emitted and received rays can be
represented as a matrix multiplication:

~L = ~M~I, (5)

where~L is the array of phasor radiances received at sensor pixels
and~I is the array of phasor radiances emitted by the source along
different directions (we use bold upper-case letters to denote ar-
rays and matrices). This is shown in Figure 2 (b). We call Eq. 5
the phasor light transport equation and~M the phasor light trans-
port matrixof the scene3. Phasor and conventional light transport
matrices are related as:

~M(p, θ) = M(p, θ)e−jω
Γ(p,θ)

c , (6)

whereM is the light transport matrix for conventional imaging and
ω is the modulation frequency. Note that the phasor light trans-
port matrix is a function of the modulation frequencyω. For DC

2Since light is non-negative, the sinusoidal modulation functions have a
non-zero offsetLDC . The corresponding phasor representation is a 2-tuple:
[LDC , ~Lω], whereLDC is the DC and~Lω is the oscillating component.
For the intensity to be non-negative,LDC ≥ |~Lω |, where|.| is the modulus
operator that returns the magnitude of the complex number.
3The matrix representation assumes that the space of light rays has been
discretized along spatial and angular dimensions.
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Fig. 3. Phasor representation of light transport events.Using phasors, all the light transport events can be represented by linear operations on complex
numbers. (Top row) Propagation of a light ray through space changes the phase of the phasor radiance. The amount of changeis proportional to both the
distance traveled and the modulation frequency. This is represented by multiplication of the initial radiance with a phasor of unit amplitude. (Middle row)
Local reflection and scattering events change only the amplitude of the radiance. These events are represented by multiplication with phasors having zero
phase. This is similar to conventional imaging. (Bottom row) Multiple rays at the same point in space traveling in the same direction can be represented by a
single ray whose radiance is the complex sum of the radiance of individual rays.

component (ω = 0), phasor transport matrix is the same as the
conventional light transport matrix.

The phasor light transport equation expresses light transport in
C-ToF imaging (Eq. 4) for a given modulation frequency as a lin-
ear, matrix multiplication. This simplifies light transport analysis in
C-ToF imaging, especially the study of how light transport depends
on the modulation frequencies. From a practical standpointalso, the
phasor representation naturally lends itself to C-ToF imaging. This
is because the phasor radiance received at every pixel has only two
unknowns (phase and magnitude), which can be captured directly
by C-ToF sensors operating at a single frequency with only two
measurements. This forms the basis of the techniques presented in
the paper, which require taking as few as four and three measure-
ments for transport-robust shape recovery and direct-global separa-
tion, respectively.

4. PHASOR REPRESENTATION OF LIGHT
TRANSPORT EVENTS

Light transport events can be categorized into three basic groups
based on the phasor transformations that they induce, as illustrated
in Figure 3. First, events that change the phase of the radiance

(propagation through space). Second, events that change only the
magnitude of the radiance (local reflection and scattering). Third,
the superposition event where multiple phasors are added togive a
resultant phasor. In the following, we consider these individually.

Propagation Through Space: Propagation through free space
changes the phase of the radiance, while the magnitude is con-
served. Let~L(x, θ) be the phasor radiance at a pointx in space
along the directionθ. Then, the radiance after propagating through
a distanceΓ is given as:

~L(x+ Γθ, θ) = ~L(x, θ)× e−jω
Γ
c , (7)

whereω is the modulation frequency. Propagation through partici-
pating media changes both the magnitude and the phase:

~L(x+ Γθ, θ) = ~L(x, θ)× e−(σΓ+jωΓ
c ) , (8)

where σ is the medium’s extinction coefficient. Note thatthe
amount of phase change∆φ = ω Γ

c
is proportional to both the

modulation frequencyω and the travel distanceΓ.

Local Reflection and Scattering: Local reflection at a surface
point changes only the magnitude of the radiance:

~L(x, θo) = ~L(x, θi)× b(x; θi, θo) , (9)
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Fig. 4. Vanishing global light transport for high modulation frequ ency. (a) A single indirect light pathP(p, θ) between outgoing directionθ and pixel
p. The phasor radiance received at the sensor alongP(p, θ) is given by rotating and attenuating the emitted phasor radiance. The angle of rotationφ is
proportional to the length ofP(p, θ). (b) A set of indirect light pathsP(p,Cθ) in a small neighborhood ofP(p, θ). All the paths end atp. The phasor
radiances along pathsP(p,Cθ) can be assumed to have constant amplitudes and linearly varying phases, and thus form a circular sector in the phasor diagram.
The angle of the sector∆φ is proportional to the modulation frequencyω. The total global radiance is the resultant of the individual phasors. (c) The light
source emits high frequency illumination. The individual phasor radiances span the complete circle, and the resultant(total global radiance) is zero.

whereb(x; θi, θo) is the BRDF term4 at point x for incoming
light directionθi and outgoing light directionθo. Local scattering
has the same effect as reflection, with the scattering term (product
of scattering albedo and the scattering phase function) replacing the
BRDF term.

Superposition of Multiple Rays: Multiple light rays traveling in
the same direction through the same point can be representedas a
single ray whose radiance is the phasor sum of individual radiances:

~L(x, θ) =
∑

i

~Li(x, θ), (10)

where~Li(x, θ) are the individual radiances, and~L(x, θ) is the total
radiance. Due to phasor summation, the magnitude of the total radi-
ance may be lesser than the sum of the individual magnitudes,i.e.
|~L(x, θ)| ≤

∑

i |~Li(x, θ)|. The resultant magnitude can be zero
as well, even if all the initial radiances have non-zero magnitudes.
This is different from conventional imaging where sum of non-zero
radiances is strictly positive.

5. FREQUENCY DEPENDENCE OF PHASOR
LIGHT TRANSPORT

Consider the phasor light transport equation (Eq. 5). We cande-
compose the incident sensor radiance as the sum of the directcom-
ponent~Ldω and the global component~Lgω, where the direct com-
ponent is the light reaching the sensor after single reflection and
the global component is the light reaching the sensor after multiple
reflections (or scattering) events:

~Lω = ~Ldω + ~Lgω = ~Md
ω
~Iω + ~Mg

ω
~Iω . (11)

4The foreshortening effect is subsumed within the BRDF term.

~Md
ω and ~Mg

ω are the direct and global components of the light
transport matrix~Mω, respectively, for modulation frequencyω.

PROPOSITION 1. Vanishing high-frequency global light
transport: For a broad range of scenes, if the frequencyω is higher
than a thresholdωthresh, the global component vanishes:

~Lgω = ~Mg
ω
~Iω = 0 for ω ≥ ωthresh . (12)

This is the key observation underlying our work. It is a con-
sequence of the fact that typically, global radiance is temporally
smooth, and can be assumed to be bandlimited. In the following,
we provide an intuition behind the above observation by using pha-
sor representations of light transport events. A frequency-domain
proof is given in Section 5.1.

Intuition: Consider a light pathP(p, θ) involving multiple inter-
reflections, starting at the light source in directionθ, and ending at
a sensor pixelp. An example light path is shown in Figure 4 (a).
The radiance~Lθ(p) received atp alongP(p, θ) is given by:

~Lθ(p) = ~M(p, θ)~I, (13)

where~I is the emitted radiance5 and ~M(p, θ) is the light transport
coefficient for the pathP(p, θ). SinceP(p, θ) involves propaga-
tion and reflection,~Lθ(p) is given by rotating and attenuating the
emitted phasor radiance (Figure 4 (a)), as described in Section 4.

Next, consider the set of light pathsP(p,Cθ) in a local neigh-
borhood ofP(p, θ) that start in a cone of directionsCθ aroundθ,
and end atp. This is illustrated in Figure 4 (b). The magnitudes
of the light transport coefficients| ~M(p, θ)| = M(p, θ) can be

5For ease of exposition, we assume an isotropic source, i.e.,~I(θ) = ~I.
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(c) Global Radiance for High Frequency Illumination

Fig. 5. Frequency domain analysis of C-ToF light transport.(a) In time-domain, the direct radiance received at the sensor is given by convolving the
emitted signal and the direct scene response, which is a dirac delta function. The Fourier transform of a delta function is constant. Thus the direct radiance has
all the frequencies that are present in the emitted radiance. (b) The global radiance is the convolution of the emitted radiance and the global scene response. For
most real-world scenes, the global scene response is temporally smooth, and thus, bandlimited. If the bandlimit of the global scene response isωb, the global
radiance is also bandlimited byωb. (c) If the emitted radiance is a sinusoid with frequencyω > ωb, the global radiance contains only the DC component.

assumed to be approximately constant in a small light path neigh-
borhood. This assumption forms the basis of methods that usehigh
spatial frequency illumination for separating light transport com-
ponents [Nayar et al. 2006] and performing transport-robust shape
recovery [Gu et al. 2011; Chen et al. 2008; Gupta and Nayar 2012;

Couture et al. 2014]. The phasesφ(p, θ) = arg
(
~M(p, θ)

)

can

be assumed to be linearly varying as a function ofθ. This can
be shown by considering the first order Taylor’s expansion ofthe
phasesφ(p, θ). See the supplementary technical report for a proof.

Thus, the individual received radiances~Lgθ(p) = ~M(p, θ)~I
have constant amplitudes and linearly varying phases, and sweep
out a circle sector. From Eq. 7, the angle∆φ of the sector is:

∆φ = ω
∆Γ(p, θ)

c
, (14)

where∆Γ(p, θ) is the range of the lengths of pathsP(p,Cθ). The
total global radiance~Lg

Cθ
(p) is the resultant phasor of all the indi-

vidual phasors (Eq. 10). Its magnitude is given by:

|~Lg
Cθ
(p)| = 2Q

sin
(
∆φ
2

)

∆φ
, (15)

whereQ is the sum of magnitudes of the individual phasors. The
derivation is given in the supplementary technical report.|~LCθ

(p)|
is a monotonically decreasing function of the sector angle∆φ for
0 ≤ ∆φ ≤ 2π. Since∆φ is proportional to the modulation fre-

quencyω (Eq. 14), asω increases,∆φ increases, and the resultant
magnitude decreases. Ifω = 2πc

∆Γ(p,θ)
, ∆φ = 2π, and the magni-

tude of the global radiance|~Lg
Cθ
(p)| = 0 6.

5.1 Frequency Domain Proof Of Vanishing
High-Frequency Global Transport

Let the temporally varying light intensity emitted from thesource
be given byI(t). The direct radiance received at a pixelp is given
by Ld(t) = αI (t− φ), whereα encapsulates the scene albedo
and intensity fall-off.φ = Γd

c
is the temporal shift due to travel of

light andΓd is the length of the direct light path for pixelp. We
can writeLd(t) as a convolution:

Ld(t) = I(t) ∗ α δ
(

t− Γ

c

)

, (16)

whereδ() is the dirac delta function. This is illustrated in Figure 5
(a). We defineD(t) = αδ(t − Γ

c
) as the direct scene response.

D(t) is the direct radiance received if the scene is illuminated with

6Strictly speaking,|~Lg
Cθ

(p)| ≈ 0. This is because the assumptions (local
constancy of light transport magnitudes and local linearity of light transport
phases) hold approximately. Asω increases beyond 2πc

∆Γ(p,θ)
, we can apply

the above analysis in smaller light path neighborhoods (narrower coneCθ),
which improves the approximation.
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(a) Direct radiance only (b) Direct and global radiance (c) Using high frequency illumination

Fig. 6. Effect of global illumination on shape recovery using C-ToFimaging. (a) Scene depths are computed using C-ToF imaging by measuring the
phase of the received radiance relative to the emitted radiance. (b) Due to global radiance, a sensor pixel receives light along multiple light paths. These light
paths have different lengths, and hence different phases ascompared to the direct reflection path. The phase of the totalradiance is different from the correct
phase (direct radiance phase), resulting in incorrect depth. (c) For high frequency illumination, the phase of the total radiance is the same as that of the direct
radiance, and can be used for accurate depth recovery.

a temporal impulse functionδ(t). Eq. 16 can be expressed in the
frequency domain as:

l̂d(ω) = î(ω)× d̂(ω) , (17)

wherel̂d(ω), î(ω) andd̂(ω) are Fourier transforms ofLd(t), I(t)
andD(t), respectively. SinceD(t) is a dirac delta function, mag-
nitude ofd̂(ω) is constant. This is illustrated in Figure 5 (a).

The global scene responseG(t) is defined as the global radiance
received if the scene is illuminated with a temporal impulseδ(t).
Similar to the direct component, the global componentLg(t) is:

Lg(t) = I(t) ∗G(t). (18)

In frequency domain, the above equation is expressed as:
l̂g(ω) = î(ω)× ĝ(ω) , (19)

wherel̂g(ω) and ĝ(ω) are Fourier transforms ofLg(t) andG(t),
respectively. This is illustrated in Figure 5 (b).

For most real-world scenes,G(t) is temporally smooth, and
hence can be assumed to be bandlimited, i.e., there exists a fre-
quencyωb, called theglobal transport bandlimit, such that̂g(ω) =
0 ∀ ω > ωb. Thus, if the emitted radianceI(t) is a sinusoid with
modulation frequencyω larger than the global transport bandlimit
ωb, the oscillating component of the global radiance,~Lgω, is zero.
Then, the global radiance has only a constant DC term (due to the
DC term of the emitted radiance). This is illustrated in Figure 5 (c).

Other global illumination effects: While we have used interreflec-
tions for the analysis so far, the results and the proposed tech-
niques are applicable to scenes with a broad range of global illu-
mination effects such as subsurface scattering, volumetric scatter-
ing and diffusion. For each of them, the global scene response is

typically smooth, and thus, bandlimited. By choosing a modula-
tion frequency higher than the bandlimit, the global radiance can
be made temporally constant.

5.2 How High Is The Frequency Bandlimit?

The global transport bandlimitωb depends on the scene geometry
and material properties, as well as the global illuminationeffect.
For volumetric scattering and diffuse interreflections,ωb is typi-
cally low. On the other hand, for specular interreflections,ωb is rel-
atively high. Scene size is also a factor in determiningωb. For large
scenes, the indirect light paths have a large range of path lengths,
resulting in a low bandlimitωb. For smaller scenes, indirect light
paths have a smaller range of path lengths, and thusG(t) has a
higher bandlimit.

As a rule of thumb,ωb is 1− 10 times c
ξ
, whereξ is the geomet-

ric scale of the scene (in meters). The geometric scale is defined
as the size of geometric features in the scene. For instance,for a
large scene with geometric scale3.0 meters,ωb is approximately
100 MHz. - 1.0 GHz., depending on the material properties (higher
bandlimit for more specular scenes). For small scenes of scale ap-
proximately50 centimeters (e.g., table-top scenes),ωb is approxi-
mately600 MHz. to 6 GHz. Note that it is possible for a large size
scene (e.g., a room) to have smaller geometrical features. If there is
significant local light transport within these features, the geometric
scale of such a scene will be determined by the feature size, and
thus will be smaller than the scene size.

Arbitrary modulation functions: So far, we have considered si-
nusoidal modulation functions. In general, any modulationfunction
can be decomposed into its Fourier components, and the presented
analysis applied to each component separately. If the lowest fre-
quency component of the function (except the DC) is higher than
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the global transport bandlimit, the global radiance at all the non-DC
frequencies is zero. Thus, we get the following result:

RESULT 1. If the lowest frequency component (except DC) of
the modulation function is higher than the global transportban-
dlimit ωb, the global radiance received at the sensor is temporally
constant.

For instance, if the emitted radianceI(t) is a square wave with
a period more than2π

ωb
, all the frequency components ofI(t) are

higher thanωb. In this case, the global radiance received at the sen-
sor contains only the DC component, and is temporally constant.

6. TRANSPORT ROBUST DEPTH RECOVERY

Effect of global light transport on depth recovery: C-ToF sys-
tems recover scene depths by measuring the phaseφ = ω 2Γ

c
of

the radiance received at the sensor, whereΓ is the scene depth.
This is illustrated in Figure 6 (a). Depth is computed from the re-
covered phase asΓ = cφ

2ω
. Due to global illumination effects such

as interreflections (multi-path interference) and scattering, a sensor
pixel may receive light along multiple light paths. These paths have
different lengths, and hence light received along these paths have
different phases as compared to the direct reflection path. Conse-
quently, the phase of the total radiance (sum of direct and global
components) is different from the correct phase, as shown inFig-
ure 6 (b). The resulting depth errors are systematic, and canbe
orders of magnitude larger than the random errors due to noise.

6.1 Micro ToF Imaging

We now present our technique for mitigating depth errors dueto
global illumination. The basic idea is simple, and relies onthe ob-
servation that global transport vanishes at high frequencies (Propo-
sition 1). Let the scene be illuminated by a light source within-
tensity varying sinusoidally at frequencyω. In phasor notation, the
intensity is given by the 2-tuple[IDC , ~Iω], whereIDC is the DC
component and~Iω is the oscillating component. The direct radi-
anceLd(p) received at a pixelp is given by the 2-tuple:

Ld(p) = [D(p) IDC, ~Dω(p) ~Iω] , (20)

whereD(p) and ~Dω(p) are the DC and oscillating terms of the
direct radiance for a light source with unit intensity. Similarly, the
global radianceLg(p) is:

Lg(p) = [G(p) IDC , ~Gω(p) ~Iω] . (21)

As shown in the previous section, ifω > ωb, the oscillating term
of the global radiance~Gω(p) = 0. Then, the total radiance is:

L(p) =
[

(D(p) +G(p)) IDC , ~Dω(p) ~Iω
]

. (22)

Since the global component of the radiance manifests only as
a constant offset, it does not influence the phase. Thus, for high
frequency illumination,the phase of the total radiance is the same
as that of the direct radiance, and can be used for accurate depth
recovery. This is shown in Figure 6 (c).

Wrapped phase problem and unambiguous depth range:The
phaseφ = ω 2Γ

c
is computed by using inverse trigonometric func-

tions (e.g., arccosine) [Payne et al. 2010], which have a range of
2π. Consequently, the set of scene depthsΓ + nπc

ω
for any integer

n will all have the same recovered phase, leading to depth ambigu-
ities. This is called the wrapped phase problem. It limits the max-
imum depth rangeRmax in which scene depths can be measured

sensor 

source 

frequency  frequency  

0 

2

phase  

(wrapped) 

phase  

(wrapped) 

scene 

depth  

(unwrapped) 

high frequencies 

(small periods) 

0 

Fig. 7. Micro ToF imaging. The proposed Micro ToF imaging technique
consists of illuminating the scene sequentially with multiple high frequency
sinusoids, and computing phases corresponding to each of them. Theoret-
ically, two high frequencies are sufficient. If all the frequencies are suffi-
ciently high, global illumination does not introduce errors in the phases.
The individual phases have depth ambiguities. Unambiguousdepth is re-
covered by unwrapping the phases, which can be done either analytically or
by building a look-up table.

unambiguously.Rmax is inversely proportional to modulation fre-
quencyω, and is given byRmax = πc

ω
[Lange 2000; Gokturk et al.

2004]. For example, forω = 2π × 1500 MHz. 7,Rmax is only10
centimeters. While it is possible to unwrap high-frequencyphases
using a low-frequency phase [Jongenelen et al. 2010], if there is
global illumination, the low frequency phase is inaccurate. This
causes unwrapping errors, resulting in erroneous shape.

This presents a tradeoff between achieving a large depth range,
and robustness to global illumination. On one hand, higher modu-
lation frequencies are robust to global illumination effects. On the
other hand, using high frequencies result in depth ambiguities. How
can we measure accurate scene depths in a large range when only
high temporal frequencies are used?

Fortunately, it is possible to estimate a low frequency phase from
multiple high frequency phases. This is a standard problem in inter-
ferometry [Gushov and Solodkin 1991; Takeda et al. 1997], struc-
tured light based triangulation [Gupta and Nayar 2012] and time-
of-flight imaging [Jongenelen et al. 2010; Jongenelen et al.2011].
There are both numerical and analytical solutions available which
can be implemented efficiently.

Algorithm: The proposed technique involves illuminating the
scene sequentially with multiple high frequency sinusoids, and
computing phases corresponding to each of them. Since all the
emitted signals havemicro (small) periods, the technique is called
Micro ToF Imaging. This is illustrated in Figure 7. Let the set
of frequencies used beΩ = [ω1, . . . , ωF ]. For each frequency
ωf , 1 ≤ f ≤ F , the sensor measures the correlation of the re-
ceived radiance with the sensor exposure functionRf (t), which is
also a sinusoid of the same frequency as the emitted light. The pha-
sor representation ofRf (t) is ~Rf = Rfe

−jψf , whereRf andψf
are the magnitude and phase of the exposure function. The mea-

7ω is the angular modulation frequency, which is2π times the modulation
frequency.
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sured brightnessBf (ψ) is a sinusoid as a function ofψf (see Ap-
pendix B for derivation):

Bf (ψf ) = Of +Af cos(φf − ψf ) . (23)

Bf (ψf ) is a function of three unknowns,φf ,Of andAf . Phases
φf , 1 ≤ f ≤ F encode the scene depth, and can be recovered by
taking three measurements for each of theF frequencies, while
varying the exposure function phase,ψf = 0, 2π

3
, 4π

3
. The unam-

biguous depthΓ can then be computed from the wrapped phasesφf
and the frequenciesωf analytically by using the Gushov-Solodkin
(G-S) algorithm [Gushov and Solodkin 1991; Jongenelen et al.
2010]. However, the G-S algorithm is prone to errors if the mea-
surements are noisy. A more robust method is to build a look-up
table between candidate scene depthsΓi ∈ [0, . . . , Rmax], and the
corresponding vector of phase valuesΦi = [φi1, . . . , φiF ]:

T[ω1,...,ωF ] (Γi) = Φi = [φi1, . . . , φiF ] . (24)

Note that the mappingT depends on the frequencies
[ω1, . . . , ωF ]. For each pixel, once the vector of phasesΦ =
[φ1, . . . , φF ] is estimated, depth can be computed by performing
a1−D search in the look-up table:

Γ∗ = argmin
Γ

||T[ω1,...,ωF ] (Γ)−Φ||2 , (25)

where||.||2 is the Euclidean norm operator on vectors. The depth
resolution achieved using this search based procedure is limited by
the sampling rate of the depth range in the look-up table. In our
implementation, the depth range was sampled every1 millimeter.
MATLAB code for the depth computation procedure is available
for download from the project web page
www.cs.columbia.edu/CAVE/projects/phasor_imaging/ .

6.2 Number of Measurements

Since there are three unknowns (offset, amplitude and phase) for
every frequency (Eq. 23), in general, there are3F unknowns ifF
frequencies are used. Thus, Micro ToF imaging withF frequencies
requires taking3F measurements.

However, if the set of frequencies lie in a narrow band, the offsets
and the amplitudes can be assumed to be approximately the same
for all the frequencies. In this case, the number of unknownsisF +
2; F phases, one offset and one amplitude. These unknowns can be
estimated by takingF + 2 measurements where three measure-
ments are taken for the first frequency{B1(0), B1(

2π
3
),B1(

4π
3
)},

and one measurement is captured for every subsequent frequency
{B2(0), . . . , BF (0)}. The offset, amplitude and the first phase are
computed from the first three measurements. Using the computed
offset and amplitude, remaining phases are computed from the re-
maining measurements.

How many frequencies are needed? Theoretically, phases com-
puted forF = 2 appropriately chosen high frequencies are suffi-
cient for estimating the scene depths unambiguously in any desired
depth range. Thus, since the number of measurements isF +2, we
get the following result:

RESULT 2. Four images are theoretically sufficient for
transport-robust and unambiguous depth recovery using Micro
ToF imaging.

In practice, more frequencies and measurements per frequency
may be needed due to limited dynamic range of the sensor, limited
frequency resolution of the light source and the sensor and noise.
Depending on the scene brightness, light source strength and sen-
sor noise levels, in our simulations and experiments, we use2 − 4
frequencies, and3− 4 images per frequency.

4
.0

m
 

sensor 

3
.0

m
 

3.0m 

sensor 

(a) V-groove (b) Cornell Box

Fig. 8. Simulation settings.(a) A v-groove with two planes of size3m×
4m each. The angle between the planes is70◦. (b) Cornell box with faces
of size3m × 3m. The sensor is at a distance of4.5 m from the scenes.

6.3 Frequency Selection for Micro ToF Imaging

What frequencies should be used for Micro ToF imaging? For any
choice ofF frequencies, a given scene depthΓi is encoded with a
vectorVi of measured brightness values. The number of elements
in Vi is equal to the total number of measurements. Ideally, scene
depths and intensity vectors should have a one-to-one mapping and
depths can be recovered without error from the measured inten-
sity vectors. However, due to various source of noise in the mea-
surements, depth estimations can be erroneous. We define theer-
ror functionEij = e−||Vi−Vj ||2 between vectorsVi andVj . Eij is
proportional to the probability of vectorVj being incorrectly de-
coded asΓi, and vice versa. For a given frequency setΩ, the mean
weighted error functionE(Ω) is defined as:

E(Ω) =
∑

Γi,Γj∈[0,...,Rmax]

|Γi − Γj |Eij , (26)

where the depth candidatesΓi andΓj are uniformly sampled from
the interval[0, . . . , Rmax] every1 millimeter.Rmax was chosen
to be10 meters.E(Ω) is the average expected depth error if the
frequency setΩ is used. In order to minimize the depth error, the
optimal set of frequencies should minimize the error function:

Ω∗ = argmin
Ω
E(Ω), ωf ∈ [ωmin, ωmax] for 1 ≤ f ≤ F ,

(27)

where[ωmin, ωmax] is the range of values from which the frequen-
cies are chosen. We round the candidate frequencies to two dec-
imal places, which is the frequency resolution achievable by our
hardware prototype. This is a constrainedF dimensional optimiza-
tion problem. We used the simplex search method implementedin
MATLAB optimization toolbox for solving this. Note that since
we use a search based procedure, the computed frequencies may
not be theoretically optimal. In practice, we have found that the
frequency set computed by running the method for> 100, 000 it-
erations achieves stable depth results.

6.4 Simulations

In the following, we show depth recovery results using simulations
for two different scene geometries.
Simulation setup: The setups are illustrated in Figure 8. The first
scene is av-groove, with an apex angle of70 deg. Both faces are
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Fig. 9. Simulation results for shape recovery using Micro ToF.(a-b) Phase maps for two high frequencies used for Micro ToF.Both the phase maps
have ambiguities. (c) The unwrapped phase map, which is usedto compute unambiguous depths. (d) Comparison of depths along horizontal scan-lines with
single frequency and dual (one high and one low) frequency conventional ToF techniques. In both the conventional techniques, the low frequency phases
are inaccurate, resulting in large depth errors (mean errors of> 200 and> 500 millimeters for the v-groove and the Cornell box, respectively). Micro ToF
imaging achieves accurate shape, with mean errors of6.6 and3.2 millimeters for the v-groove and the Cornell box, a two orders of magnitude improvement.

rectangles of dimension4×3 meters. The second scene is theCor-
nell box. Each face is a square of side3 meters. The sensor and
source (co-located) are4.5 meters from the scenes.

Simulation of input images: The input images were generated by
discretizing the scene into small patches and simulating forward
phasor light transport. We assumed the scenes to be Lambertian be-
cause for Lambertian scenes, the radiances can be computed using
an analytic closed-form expression. This is similar to conventional
imaging where the radiosity equation can be solved in a closed form
manner for Lambertian scenes [O’Toole et al. 2014]. In all our sim-
ulations, the affine noise model [Hasinoff et al. 2010] was used for
the sensor, with both scene independent read noise and scenede-
pendent shot noise added to the captured images. The detailsof
noise simulation and parameters are given in the supplementary
technical report.

Simulation parameters and comparisons:For both scenes, we
performed Micro ToF imaging using two frequencies1063, 1034
MHz., which were computed using the frequency selection proce-
dure (Section 6.3). We compare Micro ToF with two different con-
ventional ToF techniques. The single frequency conventional ToF
technique uses a frequency of10 MHz., so that the unambiguous
depth range is more than the scene depths, and no phase unwrap-
ping is required. Since the depth resolution of ToF techniques is di-
rectly proportional to the modulation frequency [Lange 2000; Gok-
turk et al. 2004], this technique achieves low depth resolution. The
dual-frequency conventional ToF technique uses one high (1063
MHz.) and one low frequency (10 MHz.). The high frequency pro-
vides high resolution, and the low frequency is used for unwrap-
ping. For each frequency, four measurements were captured,corre-
sponding to the exposure function phasesψ = 0, π

2
, π, 3π

2
. In order

to compensate for the low SNR achieved by the single frequency
ToF technique, we applied temporal averaging to its input images

so that the random depth errors due to noise are approximately the
same for all three techniques. The difference in the resultsis due to
the structured errors caused by interreflections.

Results:Figures 9 (a-b) show phase maps for the two frequencies
used for Micro ToF. Both the phase maps have ambiguities. Fig-
ures 9 (c) show the unwrapped phase map, which is used to com-
pute unambiguous depths. Figures 9 (d) show the comparison of
depths along horizontal scan-lines (shown in (c)). In both the con-
ventional techniques, the low frequency phase is inaccurate, result-
ing in large depth errors (mean errors of204 and207 millimeters
for the v-groove and534 and538 millimeters for the Cornell box).
Micro ToF imaging achieves accurate shape, with mean errorsof
6.6 and3.2 millimeters for the v-groove and the Cornell box, re-
spectively, a two orders of magnitude improvement over conven-
tional techniques.

Simulation results for shape recovery in scattering media:If
there is scattering medium (e.g., smoke, fog, murky water) between
the sensor and the scene, a sensor pixel may receive light dueto
backscattering of the emitted light, in addition to the direct reflec-
tion. This is shown in Figure 10 (a). As with interreflections, the
light received along backscattering paths have different phases as
compared to the direct reflection path. This can result in large depth
errors. In the following, we show shape recovery results using sim-
ulations for a scene immersed in scattering media.

The setup is illustrated in Figure 10 (b). The scene is a hemi-
sphere of radius1 meter. The sensor and source are2.0 meters from
the hemisphere. The input images were simulated by discretizing
the scene into small patches, and the volume into small voxels. For
simulating light transport, we assumed the medium to be homoge-
nous and optically thin so that single scattering effects dominate
and there is no multiple scattering [Narasimhan et al. 2006]. The
Henyey-Greenstein phase function [Henyey and Greenstein 1941]
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Fig. 10. Simulation results for shape recovery in scattering media.(a)
If there is scattering medium between the sensor and the scene, a sensor
pixel receives indirect light due to backscattering of the emitted light. (b)
Simulation setup. The scene is a hemisphere of radius1 meter. The sensor
and source are2.0 meters from the hemisphere. (c-d) Comparison of recov-
ered shape in the presence of weak scattering and strong scattering. Con-
ventional ToF results in large depth errors (mean errors of452 and1179
millimeters). Micro ToF imaging achieves accurate shape, with mean er-
rors of14 and16 millimeters, respectively. Due to backscatter, the depths
are under-estimated. This is because the backscatter lightpaths have shorter
lengths as compared to the direct reflection path.

with phase parameterg = 0.6 was used to model the angular scat-
tering distribution. We performed Micro ToF imaging using three
frequencies1027, 1073 and1189 MHz. We compare Micro ToF
with conventional ToF technique using a frequency of10 MHz. As
before, in order to compensate for the low SNR achieved by the
single frequency ToF technique, we applied temporal averaging to
its input images.

Figures 10 (c-d) shows the comparison of recovered shape in
the presence of weak scattering (extinction coefficientσ = 0.3
m−1) and strong scattering (extinction coefficientσ = 1.2 m−1),
respectively. Conventional ToF results in large depth errors (mean
errors of452 and1179 millimeters). Micro ToF imaging achieves
accurate shape, with mean errors of14 and16 millimeters, respec-
tively. Note that while interreflections result in depths being over-
estimated (because indirect light paths are longer than thedirect
light path), backscattering results in depths beingunder-estimated.
This is because the backscatter light paths have shorter lengths as
compared to the direct reflection path.

6.5 Error Analysis for Depth Computation

If ω is less than the global transport bandlimitωb, the oscillating
term of the global radiance~Gω(p) may not be zero. This will re-
sult in errors in phase recovery (and hence, depth estimation). As
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Fig. 11. Effect of modulation frequency on shape recovery.(a) Shapes
recovered using different frequencies, for single frequency conventional and
Micro ToF imaging (two frequencies). As the frequencies areincreased,
reconstructed shape approaches the ground-truth. (b) Meandepth errors vs.
frequency. Conventional ToF technique was used for frequencies less than
30 MHz. Micro ToF technique was used for frequencies more than30 MHz.
For Micro ToF, two frequencies were used. Depth errors are plotted for the
mean of the two frequencies. (c) The mean relative depth errors for the
Cornell box scene of three different side lengths -3 meters,1 meter, and
0.3 meter. At a given frequency, relative depth errors are larger for smaller
scenes. This is because for scenes with small geometrical scale, frequency
bandlimit is higher as compared to large scenes. As a result,smaller scenes
require relatively higher frequencies to achieve small depth errors.

derived in Appendix C, the phase errorǫφ is given by (for brevity,
we have dropped the argumentp):

ǫφ = φ− acos




D cosφ+Grω cosφG

√

D2 +Grω
2 + 2DGrω cos(φ− φG)



 , (28)

whereφG = arg( ~Gω(p)) is the phase andGrω = | ~Gω(p)| is the
magnitude of the global radiance at frequencyω. As ω increases,
the magnitude of the global radianceGrω → 0, and thus,ǫφ → 0.

Figure 11 (a) shows the comparison of shapes recovered for the
Cornell-box using different frequencies. Figure 11 (b) shows the
mean depth error vs. frequency. Single frequency conventional ToF
technique was used for frequencies less than30 MHz. Micro ToF
technique was used for frequencies more than 30 MHz. For each
depth computation using Micro ToF, two high frequencies were
used. Depth errors are plotted for the mean of the two frequencies.
As the frequencies are increased, depth error approaches zero and
the reconstructed shape approaches the ground-truth.

Effect of scene’s geometrical scale on depth errors:Figure 11
(c) plots the mean depth errors for the Cornell box scene of three
different side lengths -3 meters,1 meter, and0.3 meter. In order
to compare depth errors across different geometrical scales, mean
relative depth errors are plotted. Relative depth error at apixel is
defined asǫrelΓ = ǫΓ

Γ
× 100, whereǫΓ is the absolute depth error

andΓ is the ground truth depth. As expected, for all three scenes,
the depth error decreases with increasing frequency. At a given fre-
quency, relative depth errors are larger for smaller scenes. This is
consistent with the the fact that the frequency bandlimit ofa scene
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has an inverse relationship with the scene’s geometrical scale, as
discussed in Section 5.2. For scenes with small geometricalscale,
frequency bandlimit is higher as compared to large scenes. As a re-
sult, smaller scenes require relatively higher frequencies to achieve
small depth errors.

7. FAST SEPARATION OF DIRECT AND GLOBAL
IMAGE COMPONENTS

In this section, we present a technique for separating the direct and
global light transport components. The technique requirescaptur-
ing as few as three measurements at a single high frequency. The
measurements needed for the separation algorithm are a subset of
the measurements taken for depth recovery (Section 6). Hence, sep-
aration can be achieved as a by-product of depth estimation.

7.1 Separation Algorithm

If the scene is illuminated with sinusoidally varying intensity, the
direct and global radiance, as well as the total radiance areall sinu-
soids of the same frequency. In general, it is difficult to separate the
direct and global radiance components from the total radiance due
to the inherent ambiguity; a given sinusoid can be expressedas sum
of two sinusoids of the same frequency in infinitely many ways.

However, recall from Eq. 22 that for high frequency illumination,
the global radiance manifests only as a DC offset. This formsthe
basis of our direct-global separation approach, and is illustrated in
Figure 12 (a). Our goal is to separately recoverD(p) andG(p),
which are the direct and global components resulting from a light
source with temporally constant, unit intensity.

Let the sensor exposure function be a sinusoid that is represented
by the 2-tupleRDC , ~Rω. Letψ = arg(~Rω) be the phase of the ex-
posure function. Assuming that there is no ambient illumination 8,
the correlation measurementB(ψ) recorded at the sensor (see Ap-
pendix B for derivation) is given by:

B(ψ) = τ (D+G)RDCIDC
︸ ︷︷ ︸

offsetO

+ τ
DRωIω

2
︸ ︷︷ ︸

amplitudeA

cos(φ− ψ) , (29)

whereφ = arg( ~Dω(p)) is the phase of the direct radiance, and
τ is the sensor integration time.B(ψ) is a sinusoid with three
parameters, the offsetO = τ (D + G)RDCIDC, the amplitude
A = τ DRωIω

2
and the phaseφ, as shown in Figure 12 (b). The

three parameters can be recovered by taking three correlation mea-
surements. Since the constantsτ,Rω, Iω, RDC , IDC are known,
the direct and global components are recovered from the estimated
offset and the amplitude, as shown in Figure 12 (c):

D =
2A

τRωIω
, G =

O

τRDCIDC
−D. (30)

RESULT 3. Three images captured at a single high frequency
are theoretically sufficient for separating the direct and global com-
ponents of light transport.

8If there is ambient illumination, its contribution can be removed by cap-
turing an additional image under only ambient illuminationand subtracting
it. However, if ambient illumination is significantly stronger than the mod-
ulated light source, the captured images may have low signal-to-noise ratio
(SNR) due to large photon (shot) noise. The SNR can be increased either by
averaging multiple frames, or by concentrating the light source into smaller
scene regions and sequentially illuminating the scene [Gupta et al. 2013].
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(c) Steps of Direct-Global Separation Algorithm

Fig. 12. Direct-global separation algorithm using high frequency illu-
mination. (a) If the scene is illuminated with high-frequency illumination,
the global radiance is temporally constant. (b) The brightnessB measured
by the sensor is a sinusoid as a function of the phaseψ of the sensor ex-
posure function. Since the global radiance is temporally constant, the am-
plitude of the sinusoid depends only on the direct radiance.(c) The direct
and global components can be computed by measuring the offset and the
amplitude of the sinusoidB(ψ) at every pixel.

In practice, more measurements may need to be captured if the
measurement noise is high. In our simulations and experiments, we
use3− 4 measurements.

7.2 Simulations

Figure 13 shows the direct and global components estimated for the
two simulated scenes used in the previous section. Four measure-
ments were taken for each of the examples. For the v-groove, notice
that the global component is high near the corner, and decreases
away from the corner. In the global component of the Cornell box,
notice the color bleeding around the edges due to interreflections.

7.3 Error Analysis for Direct-Global Separation

Similar to the error analysis for depth estimation (Section6.5),ω
being less than the global transport bandlimitωb may result in er-
roneous direct-global separation. As derived in Appendix C, the
estimation errorsǫD andǫG for direct and global components, re-
spectively, are given by:

ǫD = D −
√

D2 +Grω
2 + 2DGrω cos(φ− φG) , (31)

ǫG =
√

D2 +Grω
2 + 2DGrω cos(φ− φG)−D , (32)

whereφG = arg( ~Gω(p)) is the phase andGrω = | ~Gω(p)| is the
magnitude of the global radiance at frequencyω. As ω increases,
Grω → 0, and thus,ǫD, ǫG → 0.

Figure 14 shows the effect of modulation frequency on the re-
sults of direct-global separation. If a low modulation frequency
(10 MHz.) is used, the direct component is over-estimated and the
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(a) Scene image (b) Direct component (c) Global component

Fig. 13. Simulation results for direct-global separation. (a) Scene im-
age. (b) Direct and (c) global components for the v-groove and the Cornell-
box scenes, computed using the algorithm in Section 7. Notice the color-
bleeding between different planes in the global component due to inter-
reflections, and the direct component decreasing with increasing depth due
to intensity fall-off.

global component is under-estimated. As frequency increases, the
global radiance decreases, and the separation accuracy increases.
For125 MHz., the estimation errors are lower, but the resulting im-
ages have ringing artifacts. At5300 MHz., the result is close to the
ground truth.

8. HARDWARE PROTOTYPE AND RESULTS

Our hardware prototype is based on the PMDTechnologies Cam-
Board Nano, a low-cost commercially available C-ToF imaging
system. It is shown in Figure 15. In order to operate the system
at various modulation frequencies, we used an external signal gen-
erator to provide the modulation signal instead of the on-board sig-
nal generator. Our light source is an array of 650 nm laser diodes9,
driven using an iC-Haus constant current driver. With this setup, we
can achieve a maximum modulation frequency of125 MHz. The fi-
nite rise/fall times of different components act as low pass-filters on
the modulation signal. Thus, the modulation signals are nearly si-
nusoidal, especially at high frequencies. As discussed in Section 5,
this is not a strict requirement; if the modulation signal has multi-
ple harmonic components, light transport for each component can
be analyzed separately. However, the higher order components, if
not accounted for, may introduce errors in the estimated depths.
These errors can be mitigated by canceling odd harmonics in the
modulation signal [Payne et al. 2010].

Results of depth recovery using Micro ToF imaging:The scene
consists of a fixed wall and a movable wall arranged so that they
form a concave v-groove, as illustrated in Figure 16 (a). Thecon-
cave shape produces interreflections between the two walls.The
amount of interreflections depends on the apex angleΥ, which
can be changed by moving the right wall. Both walls are made
of white, nearly diffuse material. The size of the walls is approx-
imately2m × 2m each, and the sensor is placed at a distance of
5m from the corner of the groove. For Micro ToF imaging, we use

9The size of the array is significantly smaller than the modulation wave-
length. Hence, the array of diodes is assumed to be a single light source.
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(a)ω = 10 MHz. (b)ω = 125 MHz. (c)ω = 5.3 GHz. (d) Ground Truth

Fig. 14. Effect of modulation frequency on direct-global separation.
(a) For low frequencies (e.g.,10 MHz.), the direct component is over-
estimated and the global component is underestimated. (b) For 125 MHz.,
the separation is qualitatively correct, but ringing artifacts are noticeable,
specially around the edges of the cube. (c) If the frequency is higher than
the bandwidth of the global scene response, accurate separation is achieved.
(d) Ground-truth separation.

light source  

(bank of laser diodes) 

sensor 

(PMD CamBoard Nano) 

Fig. 15. Image acquisition setup.Our hardware prototype is based on the
PMDTechnologies CamBoard Nano, a C-ToF sensor. An array of 650 nm
laser diodes acts as the light source.

two high frequencies of125 and 108 MHz, computed using the
frequency selection procedure10.

We compare the results of Micro ToF with the single frequency
conventional ToF technique. The frequency is chosen so thatthe
unambiguous depth range is larger than the scene depths. In or-
der to compensate for the low SNR achieved by the conventional
ToF technique, we applied averaging to its input images so that the
random perturbations due to noise are similar for both techniques
(conventional and Micro ToF). The difference in the resultsis due
to the structured errors caused by interreflections. Depth computed
using the conventional ToF technique has mean errors of87, 70 and
57 millimeters, forΥ = 45◦, Υ = 60◦ andΥ = 90◦, respectively.
Micro ToF achieves reconstructions that have1− 2 orders of mag-
nitude lower errors (mean errors of2.8, 6.7 and6.2 millimeters).

Figure 17 shows the performance of conventional and Micro ToF
techniques as a function of the modulation frequency. For conven-

10For frequency selection, we setωmax = 125 MHz., the maximum fre-
quency achievable by the imaging hardware, andωmin to be0.8ωmax.
Although settingωmin to an even higher value may achieve more robust-
ness to global illumination, in practice, the differenceωmax−ωmin needs
to be above a threshold due to the limited intensity resolution and dynamic
range of the sensor and the light source.
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(h) High frequency phase maps used for Micro ToF imaging (i) Reconstructed shape (j) Shape comparison
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Fig. 16. Experimental results of depth estimation on v-groove scenes. (a) The scene consists of a fixed wall and a movable wall arranged at an angle
so that they form a v-groove. The apex angleΥ can be changed by moving the right wall. The size of the walls is approximately2m × 2m each, and the
sensor is placed at a distance of5m from the corner. (b-d) Images captured by the PMD sensor, forthe v-groove in three different configurations,Υ = 45◦,
Υ = 60◦ andΥ = 90◦. For Micro ToF imaging, we use two high frequencies of125 and108 MHz. (e, h, k) Recovered phase maps for the two frequencies
used in Micro ToF. All the phase maps have ambiguities. (f, i,l) The unambiguous shapes reconstructed by unwrapping the two high frequency phases. (g,
j, m) Comparison of shapes reconstructed using Micro ToF andconventional ToF techniques along horizontal scan-lines marked in (c-e). Shape computed
using the conventional ToF technique has mean errors of87, 70 and57 millimeters, forΥ = 45◦, Υ = 60◦ andΥ = 90◦, respectively. Micro ToF achieves
reconstructions that have1− 2 orders of magnitude lower errors (mean errors of2.8, 6.7 and6.2 millimeters).

tional ToF, we performed reconstructions using a single frequency
in the range of1 − 25 MHz. For Micro ToF, we performed recon-
structions using two frequencies in the range[ω−2, ω+2]MHz. for

25 < ω < 120 MHz. The ground truth was achieved by measuring
the scene distances using a measuring tape.

We compute the reconstructed apex angle by fitting two planes
to the reconstructed shape, and computing the angle betweenthem.
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As the frequency increases, the reconstruction error decreases and
the apex angle approaches the ground truth. For frequencieshigher
than100 MHz., the reconstruction error is less than5 millimeters
and the apex angle is within2 degrees of the ground truth.

Figure 18 shows depth recovery results for a scene with rela-
tively smaller scale (sides of the v-groove are approximately 60
centimeters each) than Figure 16. Figure 18 (c) shows the depth-
map recovered using Micro ToF, with two frequencies125 and108
MHz. Figure 18 (d) shows the comparison between the computed
depth along a horizontal scan-line and the ground-truth. Due to the
smaller scale of the scene, the depth estimates have higher relative
errors as compared to the scene in Figure 16.
Results of direct-global separation:Figure 19 shows the direct-
global separation results for the v-grooves of different apex an-
gles. The modulation frequency used was124 MHz. Three images
were used for the separation in each case. As the apex angle in-
creases (from left to right), the amount of interreflectionsreduce,
and the global component decreases. The separated component im-
ages have some ringing artifacts, especially around the corner of the
v-groove. These artifacts are similar to those shown in simulations
in Figure 14, and can be mitigated by using higher frequencies.

9. DISCUSSION AND LIMITATIONS

In this paper, we proposed phasor imaging, a tool for light transport
analysis in C-ToF imaging, which can inspire novel imaging tech-
niques in the future. Using this framework, we studied the (tem-
poral) frequency dependence of light transport, and showedthat
global transport vanishes at high modulation frequencies.Based on
this observation, we present techniques for transport-robust shape
recovery and for separation of direct and global components. Since
the presented techniques require few images and have low compu-
tational cost, we believe they can be incorporated into future ToF
imaging systems. In the following, we discuss the limitations of our
techniques.
Scope and limitations: Our techniques assume that the global
light transport is temporally continuous and smooth. Whilethis as-
sumption holds for a broad range of scenes, for scenes with high-
frequency light transport such as mirror interreflections,the pre-
sented techniques are prone to errors. For such scenes, as well as
discrete multi-path interference that happens at depth discontinu-
ities, shape recovery techniques that assume temporally sparse light
transport are better suited [Godbaz et al. 2008; Dorringtonet al.
2011; Kirmani et al. 2013].

Our direct-global separation technique can separate the direct ra-
diance from relatively low-frequency global radiance, by capturing
only three images. Techniques which can separate both low and
high frequency global transport [O’Toole et al. 2014], albeit by cap-
turing more images, can be used for scenes with caustics and spec-
ular interreflections. It may be possible to develop hybrid scene-
dependent algorithms (for both shape recovery and light transport
analysis) where scene characteristics (low or high frequency light
transport) determine the reconstruction technique to be used. This
forms a promising direction of future work.

From a practical standpoint, for the proposed techniques to
achieve accurate results, the modulation frequencies achieved by
the system should be higher than the global transport bandlimit of
the scene. The higher the modulation frequency, the larger the range
of scenes (in terms of geometric scale and material properties) on
which the proposed techniques are applicable. Although there are
sensors and lasers that can achieve GHz. frequencies, they are ex-
pensive and require large acquisition time [Kirmani et al. 2009; Vel-
ten et al. 2013]. LEDs and PMDs are low cost sources and sensors
that can achieve high SNR in real time, but due to various practi-
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(a) Depth error (b) Reconstructed apex angle

Fig. 17. Accuracy of shape recovery vs. modulation frequency for the
v-groove scenes.(a) Mean reconstruction error vs. the modulation fre-
quency. (b) Reconstructed apex angle vs. the modulation frequency. The
apex angle was computed by fitting two planes to the reconstructed shape,
and computing the angle between them. For frequencies higher than100
MHz., the reconstruction error is less than5 millimeters and the apex angle
is within 2 degrees of the ground truth.
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Fig. 18. Depth recovery for the ‘figurine-and-box’ scene.(a) A scene
with smaller scale (sides of the v-groove are approximately60 centime-
ters each) than Figure 16. (b) Two phase maps for frequencies125 and
108 MHz. (c) Depth map recovered using Micro ToF (in meters). (d)Com-
parison between the computed depth profile along the horizontal scan-line
(shown in (a)) and the ground-truth. Due to the smaller scaleof the scene,
the depth estimates have higher relative errors as comparedto the scene in
Figure 16, for the same frequencies.

cal considerations such as power requirement, current devices are
limited to approximately150 MHz. With these devices, our tech-
niques are restricted to large scale (room-size) scenes with rela-
tively smooth reflectance.

Future outlook on hardware devices:Fortunately, high frequency
LEDs have been actively researched with the goal of achieving high
bandwidth optical communication networks. Recently, several re-
search groups have demonstrated LEDs that can achieve modula-
tion frequencies of multiple GHz. [Akbulut et al. 2001; Chenet al.
1999; Walter et al. 2009; Heinen et al. 1976; Wu et al. 2010], with a
low power requirement. On the other hand, a new kind of PMD sen-
sor based on MSM-technology (metal-semiconductor-metal)has
recently been proposed that can potentially achieve> 10 GHz.
modulation frequencies [Buxbaum et al. 2002; Schwarte 2004].
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Fig. 19. Results of direct-global separation for the v-groove scenes.
The direct and global components computed for the v-grooves. The modu-
lation frequency used was124 MHz. As the apex angle increases (from left
to right), the global component decreases.

With these advances, it would be possible to apply the proposed
techniques to a much larger class of scenes - scenes at centime-
ter/millimeter scale and comprising a broad range of reflectance
properties. An additional motivation for achieving higherfrequen-
cies is that the depth resolution achieved by ToF sensors is pro-
portional to the frequency used [Lange 2000; Gokturk et al. 2004].
Thus, higher frequencies can increase both the depth resolution and
accuracy of ToF based depth sensing systems.

Generalization of light sources:Although the analysis was per-
formed for a single point light source, the imaging framework pro-
posed in the paper is applicable to extended light sources, arrays
of light sources with each source potentially having a different
phase and amplitude, or spatially modulated sources for performing
spatio-temporal analysis of light transport [O’Toole et al. 2014].

APPENDIX

A. NOTATION AND SYMBOLS

Symbol convention:Right-arrow accents on the top of letters (e.g.,
~L) denote phasors. Boldface letters (e.g.,M, I, L, Φ) are used to
denote vectors (1D arrays) and matrices. Lowercase hat-accented
letters denote the Fourier transform of corresponding uppercase let-
ter (e.g.,̂i is the Fourier transform ofI). Table I gives the list of
symbols used in the paper. Lettersd and g in superscript repre-
sent the direct and global (indirect) components, respectively, of
the variable (e.g.,Ld andLg denote the direct and global compo-
nents of the radiance). The letterω in subscript denotes the value
of the variable corresponding to the modulation frequencyω.

Operators: |.| is the modulus operator on complex numbers that
returns the magnitude of the number.||.||2 is the Euclidean norm
operator on vectors.

B. SENSOR CORRELATION MEASUREMENT

Let the sensor’s exposure function beR cos(ωt−ψ) (phasor repre-
sentation:~R = Re−jψ). Let the incident radiance beL cos(ωt−φ)
(phasor representation:~L = Le−jφ). The measured brightnessBω
is a function ofψ, and is given by the correlation between the ex-
posure function and incident radiance:

Bω(ψ) =

τ∫

0

(R cos(ωt− ψ)) (L cos(ωt− φ)) dt

= τ
LR

2
cos(φ− ψ), (33)

whereτ is the sensor integration time, and is assumed to be a inte-
gral multiple of the modulation period2π

ω
.

DC component: If both the radiance and the exposure function
have a DC component as well, the measured brightness also hasa
DC component. Let the DC components of the exposure function
and the radiance beRDC andLDC , respectively. The DC compo-
nent of the measured brightness is given as:

BDC =

τ∫

0

RDCLDCdt = τLDCRDC . (34)

The total brightness is the sum ofBω andBDC :

B(ψ) = τLDCRDC
︸ ︷︷ ︸

offset

+ τ
LR

2
︸ ︷︷ ︸

amplitude

cos( φ
︸︷︷︸

phase

−ψ). (35)

Thus, the measured brightnessB(ψ) is a sinusoid as a function
of ψ, with three parameters - offset, amplitude and phase.

Ambient illumination: If the scene is illuminated by ambient light
in addition to the modulated light source, the measured brightness
has an ambient component as well. For most practical scenarios,
ambient illumination can be assumed to be temporally constant,
and thus, can be treated similar to the DC component of the modu-
lated light source. The ambient component of the measured bright-
ness is given as:

BA =

τ∫

0

RDCLAdt = τLARDC , (36)

whereLA is the radiance incident at the sensor pixel due to ambient
illumination. The total brightness is then given as:

B(ψ) = τ (LDC + LA)RDC
︸ ︷︷ ︸

offset

+ τ
LR

2
︸ ︷︷ ︸

amplitude

cos( φ
︸︷︷︸

phase

−ψ). (37)

The expression forB(ψ) is similar to that given in Eq. 35, with
an additional term in the offset due to ambient illumination. Since
ambient illumination only increases the DC component of themea-
sured brightness, its contribution can be removed by capturing an
additional imageBA = τLARDC under only ambient illumina-
tion, and subtracting it from the rest of the images.

C. ERROR ANALYSIS

If ω is less than the global transport bandlimitωb, the oscillating
term of the global radiance~Gω(p) may not be zero. This will result
in errors in phase recovery (for depth estimation) and direct-global
separation. In the following, we derive the expression for the errors.
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Table I. Symbols table
Symbol Description
I source radiant intensity
m source modulation function
L radiance
R sensor exposure function
B pixel brightness
τ sensor integration time
β light transport coefficient
M light transport matrix
Ld direct component of radiance
Lg global (indirect) component of radiance
Γ distance, length of light paths
ω temporal frequency
φ temporal modulation phase
p pixel coordinate
x 3D location in space
θ direction
t time
j

√
−1

c speed of light
b BRDF
σ scattering extinction coefficient

If ~Gω(p) 6= 0, the total radiance is given as:

L(p) =
[

(D(p) +G(p)) IDC,
(
~Dω(p) + ~Gω(p)

)
~Iω

]

. (38)

From Appendix B, the correlation measurement taken by the
sensor is given as:

B(ψ) = τ (D +G)RDCIDC +

τ
RωIω

2
(D cos(φ− ψ) +Grω cos(φG − ψ)) , (39)

whereφG = arg( ~Gω(p)) is the phase andGrω = | ~Gω(p)| is the
magnitude of the global radiance at frequencyω. Note that0 ≤
Grω ≤ G. The above equation can be rewritten as:

B(ψ) = τ (D+G)RDCIDC
︸ ︷︷ ︸

offsetO

+

τ
RωIω

2

√

D2 +Grω
2 + 2DGrω cos(φ− φG)

︸ ︷︷ ︸

amplitudeA

cos(φT − ψ),

whereφT = acos

(

D cosφ+Gr
ω cosφG√

D2+Gr
ω

2+2DGr
ω cos(φ−φG)

)

is the phase

of the total radiance. Note that the measurementB is still a si-
nusoid, with offsetÔ = τ (D + G)RDCIDC , amplitudeÂ =

τ RωIω
2

√

D2 +Grω
2 + 2DGrω cos(φ− φG), and phaseφT .

Phase error: The estimated phase (phase of the total radiance) is
φT . The phase errorǫφ is given by the different betweenφT andφ,
the true phase (phase of the direct radiance):

ǫφ = φ− acos




D cosφ+Grω cosφG

√

D2 +Grω
2 + 2DGrω cos(φ− φG)



(40)

Direct-global errors: By using Eqs. 30, the direct and global com-
ponents are estimated from̂O andÂ:

D̂ =
√

D2 +Grω
2 + 2DGrω cos(φ− φG) , (41)

Ĝ = D +G−
√

D2 +Grω
2 + 2DGrω cos(φ− φG) . (42)

The estimation errorsǫD and ǫG for direct and global compo-
nents, respectively, are given by:

ǫD = D −
√

D2 +Grω
2 + 2DGrω cos(φ− φG) , (43)

ǫG =

√

D2 +Grω
2 + 2DGrω cos(φ− φG)−D . (44)

As ω increases, the magnitude of the global radianceGrω → 0,
and thus,ǫφ, ǫD, ǫG → 0.
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Supplementary Technical Report for

Phasor Imaging: A Generalization of

Correlation-Based Time-of-Flight Imaging.

In this technical report, we provide derivations and explanations supporting
the content in the paper submission titled “Phasor Imaging: A Generalization
of Correlation-Based Time-of-Flight Imaging”.

1 Local Linearity of Light Transport Phases

Consider a light path P(p, θ) taken by a light ray emitted in direction θ from
the light source, through the scene, and reaching the sensor pixel p. We assume
the path to be piecewise linear. The last linear segment of the path is between
a scene point, say X , and pixel p.

scene 

Ray Diagram 

source 

multiple light paths sensor 

pixel  
point  

 

Phasor Representation 

radiance emitted 

by source 

radiance received 

at pixel  
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Figure 1: Light transport in a local path neighborhood. (a) A set of
indirect light paths P(p,Cθ) in a local path neighborhood. All the paths end at
sensor pixel p. (b) For a sufficiently small neighborhood, the phasor radiances
along paths P(p,Cθ) can be assumed to have constant amplitudes and linearly
varying phases. Thus, the phasors form a sector. The angle of the sector ∆φ

is proportional to the modulation frequency ω. The total indirect radiance is
given by the resultant sum of the individual phasors.

Consider the light paths in a local neighborhood of P(p, θ) that start in
a narrow cone of directions Cθ around θ and end at p. This is illustrated in
Figure 1. All the light paths share the last segment, between X and p. Since all
the paths end at the same pixel, for brevity, we drop the argument p in the rest
of the section, i.e., P(θ) = P(p, θ). Let φ(µ) be the phase of the light incident
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on the sensor along the path P(µ), for µ ∈ Cθ. The Taylor series expansion of
the function φ(µ) around θ is given as:

φ(µ) = φ(θ) +
φ[1](θ)

1!
(µ− θ) +

φ[2](θ)

2!
(µ− θ)2 + · · · , (1)

where n! denotes the factorial of n and φ[n](θ) denotes the nth derivative of
function φ evaluated at θ.

Let the total length of the path P(µ) be Γ(µ). Assuming the phase of all
the emitted rays to be the same, φ(µ) = 2πω

c
Γ(µ), where ω is the modulation

frequency. Taking the nth derivative of both sides, we get:

φ[n](µ) =
2πω

c
Γ[n](µ) . (2)

Substituting the above in right hand side of Eq. 3, we get:

φ(µ) = φ(θ) +
2πω

c

Γ[1](θ)

1!
(µ− θ) +

2πω

c

Γ[2](θ)

2!
(µ− θ)2 + · · · . (3)

If the cone Cθ is small and modulation frequency ω is high, we can consider
the first order approximation of the above 1:

φ(µ) ≈ φ(θ) +
2πω

c

Γ[1](θ)

1!
(µ− θ) . (4)

After reorganizing, the above can be written as:

φ(µ) ≈ c1 + c2µ , (5)

where c1 and c2 are constants. Thus, in a local light path neighborhood, the
phases φ(µ) of the light paths vary approximately linearly.

2 Resultant Phasor Magnitude

In the following, we derive the magnitude of the resultant of a set of phasors
of equal magnitude, so that their phases are uniformly (and continuously) dis-

tributed within a range [0,∆φ]. Let the phasors be ~P (φ) = Pejφ, for φ ∈ [0,∆φ].
Let Q be the total magnitude, i.e., the integral of the magnitudes of the phasors:

Q =

∆φ
∫

0

|~P (φ)|dφ = P∆φ. (6)

1We assume that path-lengths are not constant in a neighborhood, and Γ[1](θ) 6= 0. An
exception is if (a) all the scene points (except X) form an ellipsoid, and (b) point X and the
source lie on the foci of the ellipsoid, and (c) the inside of the ellipsoid is a mirror so that only
single bounce paths reach X from the source. In this special case, all the light paths have the
same lengths, and d[1](θ) = 0.
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Figure 2: Resultant phasor magnitude versus the sector angle. (a) A
set of phasors of equal magnitude P so that their phases are uniformly and
continuously distributed with a range [0,∆φ]. The integral of magnitude of the
individual phasors is Q. (b) The magnitude of the resultant decreases mono-
tonically as a function of the sector angle ∆φ.

This is illustrated in Figure 2 (a). It follows that the magnitude of each

individual phasor is given by P = Q
∆φ

. The resultant phasor ~R is given by
integrating the individual phasors:

~R =
Q

∆φ





∆φ
∫

0

cos(φ)dφ + j

∆φ
∫

0

sin(φ)dφ





=
Q

∆φ
(sin(∆φ) + j (1− cos(∆φ))) . (7)

The magnitude |~R| is given as:

|~R| = 2Q
sin
(

∆φ

2

)

∆φ
. (8)

|~R| is a monotonically decreasing function of the sector angle ∆φ. This is
illustrated in Figure 2 (b).

3 Noise Model

In all our simulations, the affine noise model was used for the sensor, with
both scene independent read noise and scene dependent shot noise added to
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the captured images. In particular, let the ideal (noise-free) number of photo-
electrons generated in camera pixel p for a single correlation measurement be
χ(p). In order to compute χ(p), first, the number of effective incident photons

is computed by correlating the incident sensor radiance (units = photons per
unit time) and the sensor exposure function, as described in Eq. 2 in the paper.
The number of photo-electrons is the product of the number of effective incident
photons and the quantum efficiency of the sensor.

The measured brightness B̂(p) (units = digital number) is given as:

B̂(p) = min

(

χ(p)

g
+

ηread

g
+

ηphoton(p)

g
,
F

g

)

, (9)

where g is the sensor gain (units = electrons per digital number), ηread is the
signal independent sensor read noise (units = electrons), ηphoton is the signal
dependent photon (shot) noise (units = electrons), and F is the full-well ca-
pacity of the sensor (units = electrons). The full-well capacity determines the
saturation level of the sensor. Both the noise terms are assumed to be zero
mean random variables whose variance is given as:

var (ηread) = κ , (10)

var (ηphoton(p)) = χ(p) , (11)

where κ is the signal independent read noise variance. The variance of the
photon noise term is equal to the number of photo-electrons. In our simulations,
we used full-well capacity F = 50, 000 electrons, read noise variance κ = 20
electrons, and sensor gain g = 10 electrons per digital number. The sensor was
assumed to have unit quantum efficiency.

In several newer ToF sensors, two correlation measurements are taken on
a single pixel, which are then subtracted before being read out. The different
measurement is given as:

B̂diff (p) = min

(

(χ1(p)− χ2(p))

g
+

ηread

g
+

η
diff
photon(p)

g
,
F

g

)

, (12)

where χ1(p) and χ2(p) are the two ideal correlation measurements. The vari-
ance of the photon noise in the difference measurement can be modeled as the
sum of the variances of the individual correlation measurements:

var
(

η
diff
photon(p)

)

= χ1(p) + χ2(p) . (13)
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